Self-assembly epitaxial growth of nanorods on nanowalls in hierarchical ZnO hexagonal nanocastle

被引:8
作者
Chen, Chenlong [1 ]
Yan, Tao [1 ]
Chou, Mitch M. C. [1 ]
Lee, Chun-Yu [1 ]
Wang, Bang-Min [1 ]
Wen, Meng-Jie [1 ]
Zhang, Xingwang [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mat & Optoelect Sci, NSC Taiwan Consortium Emergent Crystalline Mat, Kaohsiung 80424, Taiwan
[2] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
关键词
ZnO; Nanostructure; Nanorod; Nanowall; Chemical vapor deposition; Three-dimensional hierarchical composite nanostructures; CRYSTAL-GROWTH; NANOSTRUCTURES; NANOWIRES; FABRICATION; NANOBELTS; SUBSTRATE; STRAIN; ARRAYS; FILM; GAN;
D O I
10.1007/s11051-013-2142-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional (3D) hierarchical porous nanostructure materials with controlled morphology have attracted much attention for their unique properties and wide applications. In the present work, a novel 3D hierarchical ZnO nanostructure was prepared through chemical vapor deposition, which is self-assembled by an array of vertical 1D nanorods on top of 2D nanowalls network in 3D hexagonal nanocastle. As revealed by transmission electron microscopy, the hierarchical nanostructures are composed of single crystal ZnO along the [0001] direction, and the preferred surfaces of nanowalls are . Based on those experimental results, a growth mechanism which involves a Zn-self-catalytic vapor-liquid-solid and vapor-solid mode is proposed to explain the formation of nanorods on nanowalls in 3D nanocastle. Raman and photoluminescence spectrum demonstrated that these 3D hierarchical ZnO nanostructures are nearly free of strain and exhibit an intense ultraviolet emission at 377.6 nm with negligible defect-related green bands.
引用
收藏
页数:9
相关论文
共 37 条
[1]   In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance [J].
Bai, Yang ;
Yu, Hua ;
Li, Zhen ;
Amal, Rose ;
Lu, Gao Qing ;
Wang, Lianzhou .
ADVANCED MATERIALS, 2012, 24 (43) :5850-5856
[2]   Nanoscale assembly of mesoporous ZnO: A potential drug carrier [J].
Barick, K. C. ;
Nigam, Saumya ;
Bahadur, D. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (31) :6446-6452
[3]   ZnO nanotubes by template-assisted sol-gel route [J].
Bechelany, Mikhael ;
Amin, Amin ;
Brioude, Arnaud ;
Cornu, David ;
Miele, Philippe .
JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (08)
[4]   Growth behavior and microstructure of ZnO epilayer on γ-LiAlO2(100) substrate by chemical vapor deposition [J].
Chang, Liuwen ;
Chou, Mitch M. C. ;
Hwang, Teng-Hsing ;
Chen, Chun-Wei .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (02) :215-219
[5]   Growth and Characterization of Vertically Aligned Nonpolar [1(1)over-bar00] Orientation ZnO Nanostructures on (100) γ-LiAlO2 Substrate [J].
Chen, Chenlong ;
Lan, Yan-Ting ;
Chou, Mitch M. C. ;
Hang, Da-Ren ;
Yan, Tao ;
Feng, He ;
Lee, Chun-Yu ;
Chang, Shih-Yu ;
Li, Chu-An .
CRYSTAL GROWTH & DESIGN, 2012, 12 (12) :6208-6214
[6]   Growth and characterization of nonpolar ZnO (1 0 (1)over-bar 0) epitaxial film on γ-LiAlO2 substrate by chemical vapor deposition [J].
Chou, Mitch M. C. ;
Chang, Liuwen ;
Chung, Hsiao-Yi ;
Huang, Teng-Hsing ;
Wu, Jih-Jen ;
Chen, Chun-Wei .
JOURNAL OF CRYSTAL GROWTH, 2007, 308 (02) :412-416
[7]   Crystal growth and polishing method of lithium aluminum oxide crystal [J].
Chou, Mitch M. C. ;
Huang, Sin Jie ;
Hsu, Chuck W. C. .
JOURNAL OF CRYSTAL GROWTH, 2007, 303 (02) :585-589
[8]   Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) γ-LiAlO2 Substrate [J].
Chou, Mitch M. C. ;
Chang, Liuwen ;
Hang, Da-Ren ;
Chen, Chenlong ;
Chang, Da-Sin ;
Li, Chu-An .
CRYSTAL GROWTH & DESIGN, 2009, 9 (05) :2073-2078
[9]   Ordered porous materials for emerging applications [J].
Davis, ME .
NATURE, 2002, 417 (6891) :813-821
[10]   Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template [J].
Dong, J. J. ;
Zhang, X. W. ;
Yin, Z. G. ;
Zhang, S. G. ;
Wang, J. X. ;
Tan, H. R. ;
Gao, Y. ;
Si, F. T. ;
Gao, H. L. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (11) :4388-4395