An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries

被引:9
|
作者
Qu, Wenyu [1 ,2 ]
Chen, Guici [1 ,2 ]
Zhang, Tingting [1 ,2 ]
机构
[1] Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430065, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430070, Peoples R China
关键词
battery; CEEMDAN; RVM; wavelet; RUL predictions; MODE DECOMPOSITION; STATE; PROGNOSTICS;
D O I
10.3390/en15197422
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries are widely used in the electric vehicle industry due to their recyclability and long life. However, a failure of lithium-ion batteries can cause some catastrophic accidents, such as electric car battery explosion fires and so on. To prevent such harm from occurring, it is essential to monitor the remaining useful life of lithium-ion batteries and give early warning. In this paper, an adaptive noise reduction approach is proposed to predict the RUL (Remaining Useful Life) of lithium-ion batteries, which uses CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) combined with wavelet decomposition to achieve adaptive noise reduction decomposition, and then inputs the obtained IMF (Intrinsic Mode Function) components into LS-RVM (Least Square Relevance Vector Machine) for training, prediction, and reconstruction, so as to achieve high-precision prediction of RUL. Moreover, in order to verify the validity of the model, the model in this paper is compared with other common models. The results demonstrate that the RMSE, MAPE, and MAE of the proposed model are 0.008678, 0.005002, and 0.006894, and that it has higher accuracy than the other common prediction models.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [2] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [3] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [4] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [5] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [6] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [7] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [8] An interpretable online prediction method for remaining useful life of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Ye, Yifu
    Cai, Zhiduan
    Zhen, Aigang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning
    Pugalenthi, Karkulali
    Park, Hyunseok
    Hussain, Shaista
    Raghavan, Nagarajan
    SENSORS, 2022, 22 (10)
  • [10] Remaining Useful Life Prediction of Lithium-Ion Battery With Adaptive Noise Estimation and Capacity Regeneration Detection
    Zhang, Jiusi
    Jiang, Yuchen
    Li, Xiang
    Luo, Hao
    Yin, Shen
    Kaynak, Okyay
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (02) : 632 - 643