Sign changing solutions of superlinear Schrodinger equations

被引:217
作者
Bartsch, T
Liu, ZL
Weth, T
机构
[1] Univ Giessen, Inst Math, D-35392 Giessen, Germany
[2] Shandong Univ, Dept Math, Shandong, Peoples R China
关键词
nonlinear Schrodinger equations; nodal solutions; nodal domains;
D O I
10.1081/PDE-120028842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of sign changing solutions in H-l(R-N) for a stationary Schrodinger equation -Deltau + a(x)u = f(x, u) with superlinear and subcritical nonlinearity f, and control the number of nodal domains. Iff is odd we obtain an unbounded sequence of sign changing solutions u(k), k greater than or equal to 1, so that u(k) has at most k + l nodal domains. The bound on the number of nodal domains follows from a nonlinear version of Courant's nodal domain theorem which we also prove.
引用
收藏
页码:25 / 42
页数:18
相关论文
共 23 条
[1]   On the Morse indices of sign changing solutions of nonlinear elliptic problems [J].
Bartsch, T ;
Chang, KC ;
Wang, ZQ .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :655-677
[2]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[3]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal, V7, P115
[6]  
Bartsch T, 1993, LECT NOTES MATH, V1560
[7]  
Bartsch T., 2003, Topol. Methods Nonlinear Anal, V22, P1, DOI [10.12775/tmna.2003.025, DOI 10.12775/TMNA.2003.025]
[8]  
Bartsch T., 1999, Topol. Methods Nonlinear Anal., V13, P191
[9]   A REMARK ON THE NODAL REGIONS OF THE SOLUTIONS OF SOME SUPERLINEAR ELLIPTIC-EQUATIONS [J].
BENCI, V ;
FORTUNATO, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :123-128
[10]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053