Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non-destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincare perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.