*-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold

被引:54
作者
Ghosh, Amalendu [1 ]
Patra, Dhriti Sundar [2 ,3 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, WB, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, India
[3] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
关键词
*-Ricci Soliton; almost gradient *-Ricci soliton; Sasakian manifold; eta-Einstein manifold; (kappa; mu)-contact manifold; CONTACT METRIC MANIFOLDS; GEOMETRY; TENSOR;
D O I
10.1142/S0219887818501207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that if a Sasakian metric is a *-Ricci Soliton, then it is either positive Sasakian, or null-Sasakian. Next, we prove that if a complete Sasakian metric is an almost gradient *-Ricci Soliton, then it is positive-Sasakian and isometric to a unit sphere S2n+1. Finally, we classify nontrivial *-Ricci Solitons on non-Sasakian (kappa, mu)-contact manifolds.
引用
收藏
页数:21
相关论文
共 19 条
[1]  
Besse A.L, 2008, CLASSICS MATH
[2]  
Blair D. E., 2010, RIEMANNIAN GEOMETRY
[3]   CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION [J].
BLAIR, DE ;
KOUFOGIORGOS, T .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :189-214
[4]   On Eta-Einstein Sasakian geometry [J].
Boyer, CP ;
Galicki, K ;
Matzeu, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :177-208
[5]   Einstein manifolds and contact geometry [J].
Boyer, CP ;
Galicki, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2419-2430
[6]  
Ghosh A., 2014, SPRINGER P MATH STAT, V106, P349
[7]   Contact metric manifolds with η-parallel torsion tensor [J].
Ghosh, Amalendu ;
Sharma, Ramesh ;
Cho, Jong Taek .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (03) :287-299
[8]   Sasakian metric as a Ricci soliton and related results [J].
Ghosh, Amalendu ;
Sharma, Ramesh .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 75 :1-6
[9]  
Hamada T., 2002, Tokyo J. Math, V25, P473, DOI DOI 10.3836/TJM/1244208866
[10]  
Hamilton R. S., 1988, Contemp Math, V71, P237, DOI DOI 10.1090/CONM/071/954419