Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas

被引:83
作者
Almeida, S. M. [1 ]
Manousakas, M. [2 ,3 ]
Diapouli, E. [2 ]
Kertesz, Z. [4 ]
Samek, L. [5 ]
Hristova, E. [6 ]
Sega, K. [7 ]
Alvarez, R. Padilla [8 ]
Belis, C. A. [9 ]
Eleftheriadis, K. [2 ]
机构
[1] Univ Lisbon, Ctr Ciencias & Tecnologias Nucl, Inst Super Tecn, Estr Nacl 10, P-2695066 Bobadela, Portugal
[2] Natl Ctr Sci Res Demokritos, Environm Radioact Lab, INRaSTES, Patriarhou Gregoriou E & Neapoleos, Athens 15341, Greece
[3] Paul Scherrer Inst PSI, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[4] Inst Nucl Res, ICER Ctr, Bern Ter 18C, H-4026 Debrecen, Hungary
[5] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Ul Mickiewicza 30, PL-30059 Krakow, Poland
[6] Bulgarian Acad Sci, Natl Inst Meteorol & Hydrol, 66 Tzarigradko Chaussee, Sofia 1784, Bulgaria
[7] Inst Med Res & Occupat Hlth IMROH, Environm Hyg Unit, Ksaverska Cesta 2,POB 291, Zagreb 10001, Croatia
[8] IAEA, Dept Nucl Sci & Applicat, Div Phys & Chem Sci,Vienna Int Ctr, Phys Sect,Nucl Sci & Instrumentat Lab, Wagramer Str 5,POB 100, A-1400 Vienna, Austria
[9] European Commiss, Transport & Climate, Directorate Energy, Joint Res Ctr, Via Enrico Fermi 2749, I-21027 Ispra, Italy
关键词
Aerosol; PM2.5; Eastern europe; Central asia; Urban background; EPA-PMF; POSITIVE MATRIX FACTORIZATION; AIRUSE-LIFE PLUS; ELEMENTAL CONCENTRATIONS; PM2.5; SOURCES; PM10; POLLUTION; QUALITY; PMF; UNCERTAINTY; VARIABILITY;
D O I
10.1016/j.envpol.2020.115199
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work presents the results of a PM2.5 source apportionment study conducted in urban background sites from 16 European and Asian countries. For some Eastern Europe and Central Asia cities this was the first time that quantitative information on pollution source contributions to ambient particulate matter (PM) has been performed. More than 2200 filters were sampled and analyzed by X-Ray Fluorescence (XRF), Particle-Induced X-Ray Emission (PIXE), and Inductively Coupled Plasma Mass Spectrometry (ICPMS) to measure the concentrations of chemical elements in fine particles. Samples were also analyzed for the contents of black carbon, elemental carbon, organic carbon, and water-soluble ions. The Positive Matrix Factorization receptor model (EPA PMF 5.0) was used to characterize similarities and heterogeneities in PM2.5 sources and respective contributions in the cities that the number of collected samples exceeded 75. At the end source apportionment was performed in 11 out of the 16 participating cities. Nine major sources were identified to have contributed to PM2.5: biomass burning, secondary sulfates, traffic, fuel oil combustion, industry, coal combustion, soil, salt and "other sources". From the averages of sources contributions, considering 11 cities 16% of PM2.5 was attributed to biomass burning, 15% to secondary sulfates, 13% to traffic, 12% to soil, 8.0% to fuel oil combustion, 5.5% to coal combustion, 1.9% to salt, 0.8% to industry emissions, 5.1% to "other sources" and 23% to unaccounted mass. Characteristic seasonal patterns were identified for each PM2.5 source. Biomass burning in all cities, coal combustion in Krakow/POL, and oil combustion in Belgrade/SRB and Banja Luka/BIH increased in Winter due to the impact of domestic heating, whereas in most cities secondary sulfates reached higher levels in Summer as a consequence of the enhanced photochemical activity. During high pollution days the largest sources of fine particles were biomass burning, traffic and secondary sulfates. (C) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 66 条
[1]   Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry [J].
Almeida, S. M. ;
Lage, J. ;
Fernandez, B. ;
Garcia, S. ;
Reis, M. A. ;
Chaves, P. C. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 521 :411-420
[2]   Impact of Maritime Air Mass Trajectories on the Western European Coast Urban Aerosol [J].
Almeida, S. M. ;
Silva, A. I. ;
Freitas, M. C. ;
Dzung, H. M. ;
Caseiro, A. ;
Pio, C. A. .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2013, 76 (4-5) :252-262
[3]   Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2 [J].
Amato, F. ;
Pandolfi, M. ;
Escrig, A. ;
Querol, X. ;
Alastuey, A. ;
Pey, J. ;
Perez, N. ;
Hopke, P. K. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (17) :2770-2780
[4]   AIRUSE-LIFE plus : a harmonized PM speciation and source apportionment in five southern European cities [J].
Amato, Fulvio ;
Alastuey, Andres ;
Karanasiou, Angeliki ;
Lucarelli, Franco ;
Nava, Silvia ;
Calzolai, Giulia ;
Severi, Mirko ;
Becagli, Silvia ;
Gianelle, Vorne L. ;
Colombi, Cristina ;
Alves, Celia ;
Custodio, Danilo ;
Nunes, Teresa ;
Cerqueira, Mario ;
Pio, Casimiro ;
Eleftheriadis, Konstantinos ;
Diapouli, Evangelia ;
Reche, Cristina ;
Cruz Minguillon, Maria ;
Manousakas, Manousos-Ioannis ;
Maggos, Thomas ;
Vratolis, Stergios ;
Harrison, Roy M. ;
Querol, Xavier .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (05) :3289-3309
[5]  
[Anonymous], 2016, 282016 EEA
[6]  
[Anonymous], 2002, RED RISKS PROM HLTH
[7]  
[Anonymous], 2018, Burden of disease from ambient air pollution for 2016, DOI 10.17159/2410-972X/2016/v26n2a4
[8]  
[Anonymous], 2006, Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide
[9]   Systematic review and meta-analysis of epidemiological time-series studies on outdoor air pollution and health in Asia [J].
Atkinson, R. W. ;
Cohen, A. ;
Mehta, S. ;
Anderson, H. R. .
AIR QUALITY ATMOSPHERE AND HEALTH, 2012, 5 (04) :383-391
[10]   Evaluation of receptor and chemical transport models for PM10 source apportionment [J].
Belis, C. A. ;
Pernigotti, D. ;
Pirovano, G. ;
Favez, O. ;
Jaffrezo, J. L. ;
Kuenen, J. ;
van Der Gon, H. Denier ;
Reizer, M. ;
Riffault, V ;
Alleman, L. Y. ;
Almeida, M. ;
Amato, F. ;
Angyal, A. ;
Argyropoulos, G. ;
Bande, S. ;
Beslic, I ;
Besombes, J-L ;
Bove, M. C. ;
Brotto, P. ;
Calori, G. ;
Cesari, D. ;
Colombi, C. ;
Contini, D. ;
De Gennaro, G. ;
Di Gilio, A. ;
Diapouli, E. ;
El Haddad, I ;
Elbern, H. ;
Eleftheriadis, K. ;
Ferreira, J. ;
Vivanco, M. Garcia ;
Gilardoni, S. ;
Golly, B. ;
Hellebust, S. ;
Hopke, P. K. ;
Izadmanesh, Y. ;
Jorquera, H. ;
Krajsek, K. ;
Kranenburg, R. ;
Lazzeri, P. ;
Lenartz, F. ;
Lucarelli, F. ;
Maciejewska, K. ;
Manders, A. ;
Manousakas, M. ;
Masiol, M. ;
Mircea, M. ;
Mooibroek, D. ;
Nava, S. ;
Oliveira, D. .
ATMOSPHERIC ENVIRONMENT-X, 2020, 5