Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach

被引:18
作者
Cerjan, Alexander [1 ,2 ]
Redding, Brandon [3 ]
Ge, Li [4 ,5 ]
Liew, Seng Fatt [6 ]
Cao, Hui [6 ]
Stone, A. Douglas [6 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[3] Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
[4] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
[5] CUNY, Grad Ctr, New York, NY 10016 USA
[6] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
FDTD SIMULATION; COHERENCE; CHAOS; STATE;
D O I
10.1364/OE.24.026006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a simplified version of the steady-state ab initio laser theory for calculating the effects of mode competition in continuous wave lasers using the passive cavity resonances. This new theory harnesses widely available numerical methods that can efficiently calculate the passive cavity resonances, with negligible additional computational overhead. Using this theory, we demonstrate that the pump profile of the laser cavity can be optimized both for highly multi-mode and single-mode emission. An open source implementation of this method has been made available. (C) 2016 Optical Society of America.
引用
收藏
页码:26006 / 26015
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 2005, Computational Electrodynamics: the Finite-Difference Time-Domain Method
[2]   Taming Random Lasers through Active Spatial Control of the Pump [J].
Bachelard, N. ;
Andreasen, J. ;
Gigan, S. ;
Sebbah, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[3]   Time discretizations for Maxwell-Bloch equations [J].
Bidégaray, B .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :284-300
[4]   A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation [J].
Boehringer, Klaus ;
Hess, Ortwin .
PROGRESS IN QUANTUM ELECTRONICS, 2008, 32 (5-6) :159-246
[5]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[6]   Review on latest developments in random lasers with coherent feedback [J].
Cao, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49) :10497-10535
[7]   Random laser action in semiconductor powder [J].
Cao, H ;
Zhao, YG ;
Ho, ST ;
Seelig, EW ;
Wang, QH ;
Chang, RPH .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2278-2281
[8]  
Cerjan A., 2016, RESONANCE SPA SALT
[9]   Quantitative test of general theories of the intrinsic laser linewidth [J].
Cerjan, Alexander ;
Pick, Adi ;
Chong, Y. D. ;
Johnson, Steven G. ;
Stone, A. Douglas .
OPTICS EXPRESS, 2015, 23 (22) :28316-28340
[10]   Steady-state ab initio laser theory for complex gain media [J].
Cerjan, Alexander ;
Chong, Y. D. ;
Stone, A. Douglas .
OPTICS EXPRESS, 2015, 23 (05) :6455-6477