Eigenvalue bounds for two-dimensional magnetic Schrodinger operators

被引:10
作者
Kovarik, Hynek [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Eigenvalue estimates; magnetic Schrodinger operator; Hardy inequalities; INEQUALITY; STABILITY; SPECTRUM; NUMBER; STATES;
D O I
10.4171/JST/16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the number of negative eigenvalues of two-dimensional magnetic Schrodinger operators is bounded from above by the strength of the corresponding electric potential. Such estimates fail in the absence of a magnetic field. We also show how the corresponding upper bounds depend on the properties of the magnetic field and discuss their connection with Hardy-type inequalities.
引用
收藏
页码:363 / 387
页数:25
相关论文
共 28 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS F
  • [2] SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS
    AVRON, J
    HERBST, I
    SIMON, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) : 847 - 883
  • [3] Generalized Hardy inequality for the magnetic Dirichlet forms
    Balinsky, A
    Laptev, A
    Sobolev, AV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 507 - 521
  • [4] On the number of negative eigenvalues of Schrodinger operators with an Aharonov-Bohm magnetic field
    Balinsky, AA
    Evans, WD
    Lewis, RT
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2481 - 2489
  • [5] Birman MS, 1996, COMMUN PUR APPL MATH, V49, P967
  • [6] Bound states in one and two spatial dimensions
    Chadan, K
    Khuri, NN
    Martin, A
    Wu, TT
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 406 - 422
  • [7] WEAK TYPE ESTIMATES FOR SINGULAR VALUES AND NUMBER OF BOUND-STATES OF SCHRODINGER OPERATORS
    CWIKEL, M
    [J]. ANNALS OF MATHEMATICS, 1977, 106 (01) : 93 - 100
  • [8] Davies E.B., 1989, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics 92, V92, DOI DOI 10.1017/CBO9780511566158
  • [9] Stability of the magnetic Schrodinger operator in a waveguide
    Ekholm, T
    Kovarík, H
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) : 539 - 565
  • [10] EQUIVALENCE OF SOBOLEV INEQUALITIES AND LIEB-THIRRING INEQUALITIES
    Frank, Rupert L.
    Lieb, Elliott H.
    Seiringer, Robert
    [J]. XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 523 - +