On Counting and Analyzing Empty Pseudo-triangles in a Point Set

被引:0
|
作者
Kopeliovich, Sergey [1 ]
Vyatkina, Kira [2 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, 28 Univ Sky Pr, St Petersburg 198504, Russia
[2] St Petersburg State Univ, Russian Acad Sci, Algorithm Biol Lab, St Petersburg 194021, Russia
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT I | 2012年 / 7333卷
关键词
pseudo-triangles; finite planar point sets; counting problems; optimization problems; CONVEX POLYGONS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We address the problems of counting and analyzing empty pseudo-triangles defined by a set of points in the plane. First, we assume that the three convex vertices are fixed, and provide algorithms, which solve the counting problem in quadratic time using linear space, for the cases when the pseudo-triangles can be arbitrary or must be star-shaped. In addition, we demonstrate that our approach leads to a fairly simple method for retrieving empty pseudo-triangles optimal in a certain sense in cubic time and linear space. The relaxation of our assumption increases the time complexity by factor n(3) in each case.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [1] Empty pseudo-triangles in point sets
    Ahn, Hee-Kap
    Bae, Sang Won
    van Kreveld, Marc
    Reinbacher, Iris
    Speckmann, Bettina
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2205 - 2213
  • [2] Analyzing longitudinal Data in Knowledge Graphs utilizing shrinking pseudo-triangles
    Doerpinghaus, Jens
    Weil, Vera
    Binnewitt, Johanna
    PROCEEDINGS OF THE 2022 17TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2022, : 323 - 327
  • [3] Decompositions, partitions, and coverings with convex polygons and pseudo-triangles
    Aichholzer, O.
    Huemer, C.
    Kappes, S.
    Speckmann, B.
    Toth, Cs. D.
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 481 - 507
  • [4] Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles
    O. Aichholzer
    C. Huemer
    S. Kappes
    B. Speckmann
    Cs. D. Tóth
    Graphs and Combinatorics, 2007, 23 : 481 - 507
  • [5] Decomposing a simple polygon into pseudo-triangles and convex polygons
    Gerdjikov, Stefan
    Wolff, Alexander
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2008, 41 (1-2): : 21 - 30
  • [6] Decompositions, partitions, and coverings with convex polygons and pseudo-triangles
    Aichholzer, O.
    Huemer, C.
    Kappes, S.
    Speckmann, B.
    Toth, C. D.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 86 - 97
  • [8] Almost empty monochromatic triangles in planar point sets
    Basu, Deepan
    Basu, Kinjal
    Bhattacharya, Bhaswar B.
    Das, Sandip
    DISCRETE APPLIED MATHEMATICS, 2016, 210 : 207 - 213
  • [9] COLOURING THE TRIANGLES DETERMINED BY A POINT SET
    Fabila-Monroy, Ruy
    Wood, David R.
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2012, 3 (01) : 86 - 101
  • [10] Probabilistic triangles for point set surfaces
    Kim, Young J.
    Yoon, Mincheol
    Lee, Taekhee
    COMPUTERS & GRAPHICS-UK, 2015, 51 : 26 - 34