Global existence of solutions for interval-valued integro-differential equations under generalized H-differentiability

被引:9
作者
Vinh An Truong [1 ]
Van Hoa Ngo [2 ]
Dinh Phu Nguyen [3 ]
机构
[1] Univ Tech Educ, Fac Fdn Sci, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Div Appl Math, Ho Chi Minh City, Vietnam
[3] Univ Sci, Fac Math & Comp Sci, VNU, Ho Chi Minh City, Vietnam
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
interval-valued differential equations; interval-valued integro-differential equations; generalized Hukuhara derivative; HUKUHARA DIFFERENTIABILITY; CAUCHY-PROBLEM; SET; UNIQUENESS; THEOREM;
D O I
10.1186/1687-1847-2013-217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider the interval-valued integro-differential equations (IIDEs) under generalized H-differentiability (DHX)-X-g(t) = F(t, X(t)) + integral(t)(t0) G(t, s, X(s)) ds, X(t(0)) = X-0 is an element of K-C(R). The global existence of solutions for interval-valued integro-differential equations with initial conditions under generalized H-differentiability is studied. Theorems for global existence of solutions are given and proved on [t(0), infinity). Some examples are given to illustrate these results.
引用
收藏
页数:16
相关论文
共 42 条
  • [1] Agarwal RP, 2007, DIFFER EQU APPL, V5, P1
  • [2] Viability theory and fuzzy differential equations
    Agarwal, RP
    O'Regan, D
    Lakshmikantham, V
    [J]. FUZZY SETS AND SYSTEMS, 2005, 151 (03) : 563 - 580
  • [3] A stacking theorem approach for fuzzy differential equations
    Agarwal, RP
    O'Regan, D
    Lakshmikantham, V
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) : 299 - 312
  • [4] Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations
    Alikhani, Robab
    Bahrami, Fariba
    Jabbari, Adel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1810 - 1821
  • [5] A new method for solving fuzzy integro-differential equation under generalized differentiability
    Allahviranloo, T.
    Abbasbandy, S.
    Sedaghgatfar, O.
    Darabi, P.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 : S191 - S196
  • [6] A note on "Fuzzy linear systems"
    Allahviranloo, T.
    Ghanbari, M.
    Hosseinzadeh, A. A.
    Haghi, E.
    Nuraei, R.
    [J]. FUZZY SETS AND SYSTEMS, 2011, 177 (01) : 87 - 92
  • [7] Allahviranloo T, 2011, AUSTR J BASIC APPL S, V5, P154
  • [8] [Anonymous], 1992, MATH ITS APPL SOVIET
  • [9] A note on "two-point boundary value problems associated with non-linear fuzzy differential equations"
    Bede, B
    [J]. FUZZY SETS AND SYSTEMS, 2006, 157 (07) : 986 - 989
  • [10] Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations
    Bede, B
    Gal, SG
    [J]. FUZZY SETS AND SYSTEMS, 2005, 151 (03) : 581 - 599