Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator

被引:26
作者
Fujita, Yasuhiro
Ishii, Hitoshi [1 ]
Loreti, Paola
机构
[1] Waseda Univ, Dept Math, Fac Educ & Integrated Arts & Sci, Shinjuku Ku, Tokyo 1698050, Japan
[2] Toyama Univ, Dept Math, Toyama 930, Japan
[3] Univ Roma La Sapienza, Dipartimento Metodi & Modeli Matemat Sci Applicat, Rome, Italy
关键词
long time behavior; maximum principle; Ornstein-Uhlenbeck operator; viscosity solutions; viscous Hamilton-Jacobi equations;
D O I
10.1080/03605300500358087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time behavior of solutions of the Cauchy problem for semilinear parabolic equations with the Ornstein-Uhlenbeck operator in R-N . The long time behavior in the main results is stated with help of the corresponding to ergodic problem, which complements, in the case of unbounded domains, the recent developments on long time behaviors of solutions of (viscous) Hamilton-Jacobi equations due to Namah (1996), Namah and Roquejoffre (1999), Roquejoffre (1998), Fathi (1998), Barles and Souganidis (2000, 2001). We also establish existence and uniqueness results for solutions of the Cauchy problem and ergodic problem for semilinear parabolic equations with the Ornstein-Uhlenbeck operator.
引用
收藏
页码:827 / 848
页数:22
相关论文
共 10 条
[1]   On the strong maximum principle for fully nonlinear degenerate elliptic equations [J].
Bardi, M ;
Da Lio, F .
ARCHIV DER MATHEMATIK, 1999, 73 (04) :276-285
[2]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[3]   Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) :1311-1323
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[6]  
Ladyzenskaja O. A., 1967, TRANSLATIONS MATH MO, V23
[7]   Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations [J].
Namah, G ;
Roquejoffre, JM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :883-893
[8]  
Namah G, 1996, ASYMPTOTIC ANAL, V12, P355
[9]  
Protter M. H., 1967, Maximum Principles in Differential Equations
[10]   Long-time behaviour of the solutions of one-dimensional nonlinear Hamilton-Jacobi equations [J].
Roquejoffre, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :185-189