Global existence and blow-up of solutions for a semilinear parabolic system

被引:5
作者
Chen, SH [1 ]
Derrick, WR
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Univ Montana, Dept Math, Missoula, MT 59812 USA
关键词
D O I
10.1216/rmjm/1181071644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the initial-boundary value problem (u(i))(t) = Delta u(i) + f(i)(u(1),...,u(m)), with u(i)/partial derivative(Omega) = 0 and u(i)(x, 0) = phi(i)(x), i = 1,.., m, in a bounded domain Omega is an element of R-n, with n greater than or equal to 1 and m greater than or equal to 1. Under suitable assumptions on the nonlinear terms f(i) we will prove that, if 0 less than or equal to phi(i) < lambda psi(i) with lambda < 1, then the solutions are global, while if phi(i) > lambda psi(i) with lambda > i, then the solutions must blow up in finite time, where the psi(i) are positive solutions of Delta psi(i) + f(i)(psi(1),..., psi(m)) = 0 with psi i/partial derivative(Omega) = 0.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 19 条
[1]  
Amann H., 1978, Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, P1, DOI DOI 10.1016/B978-0-12-165550-1.50007-0
[2]   FINITE-TIME BLOWUP FOR SEMILINEAR REACTIVE-DIFFUSIVE SYSTEMS [J].
BEBERNES, J ;
LACEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (01) :105-129
[3]   FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC-SYSTEM [J].
BEBERNES, J ;
LACEY, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1415-1425
[4]   A CRITERION FOR BLOW-UP OF SOLUTIONS TO SEMILINEAR HEAT-EQUATIONS [J].
BELLOUT, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :722-727
[5]   BLOW-UP ESTIMATES OF POSITIVE SOLUTIONS OF A PARABOLIC-SYSTEM [J].
CARISTI, G ;
MITIDIERI, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (02) :265-271
[6]  
CHEN SH, 1988, ACTA MATH SCI, V8, P35
[7]  
CHEN SH, IN PRESS NONLINEAR A
[8]   A SEMILINEAR PARABOLIC-SYSTEM IN A BOUNDED DOMAIN [J].
ESCOBEDO, M ;
HERRERO, MA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :315-336
[9]   CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS [J].
ESCOBEDO, M ;
LEVINE, HA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :47-100
[10]  
Friedman A., 1969, Partial Differential Equations