Learning Molecular Representations for Medicinal Chemistry Miniperspective

被引:128
作者
Chuang, Kangway, V [1 ]
Gunsalus, Laura M. [1 ]
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Dept Bioengn & Therapeut Sci,Bakar Computat Hlth, Inst Neurodegenerat Dis,Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
DEEP NEURAL-NETWORKS; DRUG DISCOVERY; ORGANIC-CHEMISTRY; MACHINE; QSAR; DESIGN; CLASSIFICATION; PREDICTION; SMILES; DESCRIPTORS;
D O I
10.1021/acs.jmedchem.0c00385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
引用
收藏
页码:8705 / 8722
页数:18
相关论文
共 50 条
  • [41] Revolutionizing Playing with Skeleton Atoms: Molecular Editing Surgery in Medicinal Chemistry
    Rabie, Amgad M.
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2025, 25 (03) : 190 - 195
  • [42] The impact of click chemistry in medicinal chemistry
    Hou, Jingli
    Liu, Xifang
    Shen, Jie
    Zhao, Guilong
    Wang, Peng George
    EXPERT OPINION ON DRUG DISCOVERY, 2012, 7 (06) : 489 - 501
  • [43] Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery
    Vilar, Santiago
    Cozza, Giorgio
    Moro, Stefano
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2008, 8 (18) : 1555 - 1572
  • [44] Building a Culture of Medicinal Chemistry Knowledge Sharing
    Beshore, Douglas C.
    Haidle, Andrew M.
    Arasappan, Ashok
    Lim, Yeon-Hee
    Raheem, Izzat
    Roecker, Anthony J.
    Shockley, Samantha E.
    Simov, Vladimir
    JOURNAL OF MEDICINAL CHEMISTRY, 2022, 65 (05) : 3776 - 3785
  • [45] Interpretable molecular encodings and representations for machine learning tasks
    Weckbecker, Moritz
    Anzela, Aleksandar
    Yang, Zewen
    Hattab, Georgesm
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 2326 - 2336
  • [46] Recent applications of microwave irradiation to medicinal chemistry
    Alcazar, Jesus
    Oehlrich, Daniel
    FUTURE MEDICINAL CHEMISTRY, 2010, 2 (02) : 169 - 176
  • [47] The impact of binding thermodynamics on medicinal chemistry optimizations
    Ferenczy, Gyoergy G.
    Keseru, Gyoergy M.
    FUTURE MEDICINAL CHEMISTRY, 2015, 7 (10) : 1285 - 1303
  • [48] Computational medicinal chemistry: part III Foreword
    D'Oca, Gino
    FUTURE MEDICINAL CHEMISTRY, 2011, 3 (08) : 899 - 900
  • [49] EFMC: Trends in Medicinal Chemistry and Chemical Biology
    Auberson, Yves P.
    Arimondo, Paola B.
    Duca, Maria
    Essig, Sebastian
    Grether, Uwe
    Rufer, Arne C.
    Sbardella, Gianluca
    Schopfer, Ulrich
    Torrens, Antoni
    van Der Stelt, Mario
    Vauzeilles, Boris
    Vazquez, Olalla
    Zhang, Andrew D. X.
    CHEMBIOCHEM, 2023,
  • [50] AiZynth impact on medicinal chemistry practice at AstraZeneca
    Shields, Jason D.
    Howells, Rachel
    Lamont, Gillian
    Leilei, Yin
    Madin, Andrew
    Reimann, Christopher E.
    Rezaei, Hadi
    Reuillon, Tristan
    Smith, Bryony
    Thomson, Clare
    Zheng, Yuting
    Ziegler, Robert E.
    RSC MEDICINAL CHEMISTRY, 2024, 15 (04): : 1085 - 1095