Learning Molecular Representations for Medicinal Chemistry Miniperspective

被引:128
|
作者
Chuang, Kangway, V [1 ]
Gunsalus, Laura M. [1 ]
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Dept Bioengn & Therapeut Sci,Bakar Computat Hlth, Inst Neurodegenerat Dis,Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
DEEP NEURAL-NETWORKS; DRUG DISCOVERY; ORGANIC-CHEMISTRY; MACHINE; QSAR; DESIGN; CLASSIFICATION; PREDICTION; SMILES; DESCRIPTORS;
D O I
10.1021/acs.jmedchem.0c00385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
引用
收藏
页码:8705 / 8722
页数:18
相关论文
共 50 条
  • [31] Machine Learning Application for Medicinal Chemistry: Colchicine Case, New Structures, and Anticancer Activity Prediction
    Nowak, Damian
    Huczynski, Adam
    Bachorz, Rafal Adam
    Hoffmann, Marcin
    PHARMACEUTICALS, 2024, 17 (02)
  • [32] Essential Medicinal Chemistry of Essential Medicines
    Serafini, Marta
    Cargnin, Sarah
    Massarotti, Alberto
    Pirali, Tracey
    Genazzani, Armando A.
    JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (18) : 10170 - 10187
  • [33] Medicinal Electrochemistry: Integration of Electrochemistry, Medicinal Chemistry and Computational Chemistry
    Almeida, M. O.
    Maltarollo, V. G.
    de Toledo, R. A.
    Shim, H.
    Santos, M. C.
    Honorio, K. M.
    CURRENT MEDICINAL CHEMISTRY, 2014, 21 (20) : 2266 - 2275
  • [34] Rethinking Medicinal Chemistry in the Cheminformatics Age
    Oprea, Tudor I.
    Weininger, David
    JOURNAL OF MEDICINAL CHEMISTRY, 2024, 67 (20) : 17935 - 17939
  • [35] Medicinal chemistry insights into antiviral peptidomimetics
    Ding, Dang
    Xu, Shujing
    da Silva-Junior, Edeildo Ferreira
    Liu, Xinyong
    Zhan, Peng
    DRUG DISCOVERY TODAY, 2023, 28 (03) : 1 - 8
  • [36] Coping with Polypharmacology by Computational Medicinal Chemistry
    Schneider, Gisbert
    Reker, Daniel
    Rodrigues, Tiago
    Schneider, Petra
    CHIMIA, 2014, 68 (09) : 648 - 653
  • [37] New and unusual scaffolds in medicinal chemistry
    Marson, Charles M.
    CHEMICAL SOCIETY REVIEWS, 2011, 40 (11) : 5514 - 5533
  • [38] Expanding the medicinal chemistry synthetic toolbox
    Bostrom, Jonas
    Brown, Dean G.
    Young, Robert J.
    Keseru, Gyorgy M.
    NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (10) : 709 - 727
  • [39] BoostSweet: Learning molecular perceptual representations of sweeteners
    Lee, Junho
    Song, Seon Bin
    Chung, You Kyoung
    Jang, Jee Hwan
    Huh, Joonsuk
    FOOD CHEMISTRY, 2022, 383
  • [40] Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design
    Ehrt, Christiane
    Brinkjost, Tobias
    Koch, Oliver
    JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (09) : 4121 - 4151