Learning Molecular Representations for Medicinal Chemistry Miniperspective

被引:128
|
作者
Chuang, Kangway, V [1 ]
Gunsalus, Laura M. [1 ]
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Dept Bioengn & Therapeut Sci,Bakar Computat Hlth, Inst Neurodegenerat Dis,Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
DEEP NEURAL-NETWORKS; DRUG DISCOVERY; ORGANIC-CHEMISTRY; MACHINE; QSAR; DESIGN; CLASSIFICATION; PREDICTION; SMILES; DESCRIPTORS;
D O I
10.1021/acs.jmedchem.0c00385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
引用
收藏
页码:8705 / 8722
页数:18
相关论文
共 50 条
  • [21] Expanding medicinal chemistry space
    Barker, Andy
    Kettle, Jason G.
    Nowak, Thorsten
    Pease, J. Elizabeth
    DRUG DISCOVERY TODAY, 2013, 18 (5-6) : 298 - 304
  • [22] Molecular representations in bio-cheminformatics
    Nguyen-Vo, Thanh-Hoang
    Teesdale-Spittle, Paul
    Harvey, Joanne E.
    Nguyen, Binh P.
    MEMETIC COMPUTING, 2024, 16 (03) : 519 - 536
  • [23] Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis
    Struble, Thomas J.
    Alvarez, Juan C.
    Brown, Scott P.
    Chytil, Milan
    Cisar, Justin
    DesJarlais, Renee L.
    Engkvist, Ola
    Frank, Scott A.
    Greve, Daniel R.
    Griffin, Daniel J.
    Hou, Xinjun
    Johannes, Jeffrey W.
    Kreatsoulas, Constantine
    Lahue, Brian
    Mathea, Miriam
    Mogk, Georg
    Nicolaou, Christos A.
    Palmer, Andrew D.
    Price, Daniel J.
    Robinson, Richard, I
    Salentin, Sebastian
    Xing, Li
    Jaakkola, Tommi
    Green, William H.
    Barzilay, Regina
    Coley, Connor W.
    Jensen, Klays F.
    JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) : 8667 - 8682
  • [24] Artificial Intelligence in Retrosynthesis Prediction and its Applications in Medicinal Chemistry
    Long, Lanxin
    Li, Rui
    Zhang, Jian
    JOURNAL OF MEDICINAL CHEMISTRY, 2025, 68 (03) : 2333 - 2355
  • [25] Advances in Computational Medicinal Chemistry: Matched Molecular Pair Analysis
    Wassermann, Anne Mai
    Dimova, Dilyana
    Iyer, Preeti
    Bajorath, Juergen
    DRUG DEVELOPMENT RESEARCH, 2012, 73 (08) : 518 - 527
  • [26] IS THERE ANYTHING NEW ABOUT THE MOLECULAR RECOGNITION APPLIED TO MEDICINAL CHEMISTRY?
    Fokoue, Harold H.
    Pinheiro, Pedro S. M.
    Fraga, Carlos A. M.
    Sant'Anna, Carlos M. R.
    QUIMICA NOVA, 2020, 43 (01): : 78 - 89
  • [27] SELFIES and the future of molecular string representations
    Krenn, Mario
    Ai, Qianxiang
    Barthel, Senja
    Carson, Nessa
    Frei, Angelo
    Frey, Nathan C.
    Friederich, Pascal
    Gaudin, Theophile
    Gayle, Alberto Alexander
    Jablonka, Kevin Maik
    Lameiro, Rafael F.
    Lemm, Dominik
    Lo, Alston
    Moosavi, Seyed Mohamad
    Napoles-Duarte, Jose Manuel
    Nigam, AkshatKumar
    Pollice, Robert
    Rajan, Kohulan
    Schatzschneider, Ulrich
    Schwaller, Philippe
    Skreta, Marta
    Smit, Berend
    Strieth-Kalthoff, Felix
    Sun, Chong
    Tom, Gary
    von Rudorff, Guido Falk
    Wang, Andrew
    White, Andrew D.
    Young, Adamo
    Yu, Rose
    Aspuru-Guzik, Alan
    PATTERNS, 2022, 3 (10):
  • [28] An evolutionary algorithm for interpretable molecular representations
    Pflueger, Philipp M.
    Kuehnemund, Marius
    Katzenburg, Felix
    Kuchen, Herbert
    Glorius, Frank
    CHEM, 2024, 10 (05): : 1391 - 1405
  • [29] Molecular representations in AI-driven drug discovery: a review and practical guide
    David, Laurianne
    Thakkar, Amol
    Mercado, Rocio
    Engkvist, Ola
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [30] Extracting medicinal chemistry intuition via preference machine learning
    Choung, Oh-Hyeon
    Vianello, Riccardo
    Segler, Marwin
    Stiefl, Nikolaus
    Jimenez-Luna, Jose
    NATURE COMMUNICATIONS, 2023, 14 (01)