Learning Molecular Representations for Medicinal Chemistry Miniperspective

被引:128
|
作者
Chuang, Kangway, V [1 ]
Gunsalus, Laura M. [1 ]
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Dept Bioengn & Therapeut Sci,Bakar Computat Hlth, Inst Neurodegenerat Dis,Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
DEEP NEURAL-NETWORKS; DRUG DISCOVERY; ORGANIC-CHEMISTRY; MACHINE; QSAR; DESIGN; CLASSIFICATION; PREDICTION; SMILES; DESCRIPTORS;
D O I
10.1021/acs.jmedchem.0c00385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
引用
收藏
页码:8705 / 8722
页数:18
相关论文
共 50 条
  • [1] Machine Learning in Chemoinformatics and Medicinal Chemistry
    Rodriguez-Perez, Raquel
    Miljkovic, Filip
    Bajorath, Juergen
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2022, 5 : 43 - 65
  • [2] Geometric deep learning on molecular representations
    Atz, Kenneth
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1023 - 1032
  • [3] Recent applications of machine learning in medicinal chemistry
    Panteleev, Jane
    Gao, Hua
    Jia, Lei
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2018, 28 (17) : 2807 - 2815
  • [4] Molecular representations for machine learning applications in chemistry
    Raghunathan, Shampa
    Priyakumar, U. Deva
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2022, 122 (07)
  • [5] Molecular Shape and Medicinal Chemistry: A Perspective
    Nicholls, Anthony
    McGaughey, Georgia B.
    Sheridan, Robert P.
    Good, Andrew C.
    Warren, Gregory
    Mathieu, Magali
    Muchmore, Steven W.
    Brown, Scott P.
    Grant, J. Andrew
    Haigh, James A.
    Nevins, Neysa
    Jain, Ajay N.
    Kelley, Brian
    JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (10) : 3862 - 3886
  • [6] A Molecular Structure Ontology for Medicinal Chemistry
    Chui, Carmen
    Grueninger, Michael
    FORMAL ONTOLOGY IN INFORMATION SYSTEMS, 2016, 283 : 285 - 298
  • [7] Computational Exploration of Molecular Scaffolds in Medicinal Chemistry
    Hu, Ye
    Stumpfe, Dagmar
    Bajorath, Juergen
    JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (09) : 4062 - 4076
  • [8] Molecular Similarity in Medicinal Chemistry
    Maggiora, Gerald
    Vogt, Martin
    Stumpfe, Dagmar
    Bajorath, Juergen
    JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (08) : 3186 - 3204
  • [9] From Hits to Leads: Challenges for the Next Phase of Machine Learning in Medicinal Chemistry
    Schneider, Gisbert
    MOLECULAR INFORMATICS, 2011, 30 (09) : 759 - 763
  • [10] Combining machine learning and quantum mechanics yields more chemically aware molecular descriptors for medicinal chemistry applications
    Tortorella, Sara
    Carosati, Emanuele
    Sorbi, Giulia
    Bocci, Giovanni
    Cross, Simon
    Cruciani, Gabriele
    Storchi, Loriano
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (29) : 2068 - 2078