LIMIT CYCLES AND INVARIANT CENTERS FOR AN EXTENDED KUKLES SYSTEM

被引:1
|
作者
Liu, Zhenhai [1 ,2 ]
Szanto, Ivan [3 ]
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Cal, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
[3] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-5, Valparaiso, Chile
关键词
limit cycle; center; bifurcation;
D O I
10.18514/MMN.2017.2043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of polynomial systems of odd degree with limit cycles, invariant centers and invariant straight lines, is examined. The limit cycles can be obtain as a bifurcation of a non hyperbolic focus at the origin as Hopf bifurcations. We will also obtain the necessary and sufficient conditions for the critical point at the interior of bounded region to be a center.
引用
收藏
页码:947 / 952
页数:6
相关论文
共 50 条
  • [1] LIMIT CYCLES AND INVARIANT PARABOLAS FOR AN EXTENDED KUKLES SYSTEM
    Szabo, Bela
    Szanto, Ivan
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 219 - 225
  • [2] CENTRES AND LIMIT CYCLES FOR AN EXTENDED KUKLES SYSTEM
    Hill, Joe M.
    Lloyd, Noel G.
    Pearson, Jane M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [3] LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE
    Liu Zhenhai
    Saez, E.
    Szanto, I.
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (04) : 865 - 869
  • [4] LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE
    刘振海
    E.Sáez I.Szántó
    ActaMathematicaScientia, 2008, (04) : 865 - 869
  • [5] Coexistence of limit cycles and invariant algebraic curves for a Kukles system
    Chavarriga, J
    Sáez, E
    Szántó, I
    Grau, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 673 - 693
  • [6] Limit cycles for the kukles system
    Zang, Hong
    Zhang, Tonghua
    Tian, Yu-Chu
    Tade, Moses O.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2008, 14 (02) : 283 - 298
  • [7] Limit Cycles for the Kukles system
    Hong Zang
    Tonghua Zhang
    Yu-Chu Tian
    Moses O. Tadé
    Journal of Dynamical and Control Systems, 2008, 14 : 283 - 298
  • [8] Limit cycles in Kukles systems of arbitrary degree with invariant ellipse
    Chavarriga, J.
    Garcia, I. A.
    Saez, E.
    Szanto, I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (04) : 1005 - 1014
  • [9] Centers and Limit Cycles of Generalized Kukles Polynomial Differential Systems: Phase Portraits and Limit Cycles
    Belfar, Ahlam
    Benterkit, Rebiha
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (04): : 387 - 397
  • [10] Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse
    Saez, Eduardo
    Szanto, Ivan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1695 - 1700