A strong Balian-low theorem

被引:0
|
作者
Liu, YM [1 ]
机构
[1] Beijing Polytech Univ, Dept Appl Math, Beijing 100022, Peoples R China
关键词
Gabor frame; Gabor basis; density; wavelet;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Balian-Low theorem is a key result in time-frequency analysis. It says that if a Gabor system {e(2 pi imt)g(t-n)} forms a frame for L-2 (R), then either tg(t) or omega(g) over bar(omega) can not be in L-2 (R). In this paper, a new theorem will be proved for a family of non-uniform Gabor frames {e(pi ix m t) g(t-y(n))} with Condition G, which is stronger than Balian-Low theorem.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 50 条
  • [21] From Exact Systems to Riesz Bases in the Balian-Low Theorem
    Nitzan, Shahaf
    Olsen, Jan-Fredrik
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (04) : 567 - 603
  • [22] The Balian-Low Theorem for the Windowed Clifford-Fourier Transform
    Fu, Yingxiong
    Kahler, Uwe
    Cerejeiras, Paula
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 299 - 319
  • [23] An Amalgam Balian-Low theorem for symplectic lattices of rational density
    Cabrelli, Carlos
    Molter, Ursula
    Pfander, Goetz E.
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 134 - 138
  • [24] The Finite Balian-Low Conjecture
    Lammers, Mark
    Stampe, Simon
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 139 - 143
  • [25] A Balian-Low type theorem for Gabor Riesz sequences of arbitrary density
    Caragea, Andrei
    Lee, Dae Gwan
    Philipp, Friedrich
    Voigtlaender, Felix
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [26] Time-frequency shift invariance and the Amalgam Balian-Low theorem
    Cabrelli, Carlos
    Molter, Ursula
    Pfander, Goetz E.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 41 (03) : 677 - 691
  • [27] The Balian-Low theorem for the symplectic form on R2d
    Benedetto, JJ
    Czaja, W
    Maltsev, AY
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) : 1735 - 1750
  • [28] The Balian-Low theorem for locally compact abelian groups and vector bundles
    Enstad, Ulrik
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 143 - 176
  • [29] Spectrum Efficient, Localized, Orthogonal Waveforms: Closing the Gap With the Balian-Low Theorem
    Korevaar, C. Willem
    Kokkeler, Andre B. J.
    de Boer, Pieter-Tjerk
    Smit, Gerard J. M.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (05) : 2155 - 2165
  • [30] Weyl-Heisenberg frames and Balian-Low theorem in l2(Z)
    Poumai, K. T.
    Kaushik, S. K.
    Mantry, P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)