On the (3,1)-choosability of planar graphs without adjacent cycles of length 5, 6, 7

被引:1
作者
Wang, Yue [1 ]
Wu, Jianliang [1 ]
Yang, Donglei [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Choosability with separation; Planar graph; List coloring; Cycle; CHOOSABILITY;
D O I
10.1016/j.disc.2019.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (k, d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors satisfying vertical bar L(x) boolean AND L(y)vertical bar <= d for each edge xy. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This concept is also known as choosability with separation. In this paper, we prove that any planar graph G is (3, 1)-choosable if any i-cycle is not adjacent to a j-cycle, where 5 <= i <= 6 and 5 <= j <= 7. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1782 / 1791
页数:10
相关论文
共 10 条
[1]   (4,2)-Choosability of Planar Graphs with Forbidden Structures [J].
Berikkyzy, Zhanar ;
Cox, Christopher ;
Dairyko, Michael ;
Hogenson, Kirsten ;
Kumbhat, Mohit ;
Lidicky, Bernard ;
Messerschmidt, Kacy ;
Moss, Kevin ;
Nowak, Kathleen ;
Palmowski, Kevin F. ;
Stolee, Derrick .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :751-787
[2]  
Bondy J.A., 1976, GRAPH THEORY APPL
[3]   On Choosability with Separation of Planar Graphs Without Adjacent Short Cycles [J].
Chen, Min ;
Lih, Ko-Wei ;
Wang, Weifan .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) :1507-1518
[4]   A sufficient condition for planar graphs to be (3,1)-choosable [J].
Chen, Min ;
Fan, Yingying ;
Wang, Yiqiao ;
Wang, Weifan .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) :987-1011
[5]   On Choosability with Separation of Planar Graphs with Forbidden Cycles [J].
Choi, Ilkyoo ;
Lidicky, Bernard ;
Stolee, Derrick .
JOURNAL OF GRAPH THEORY, 2016, 81 (03) :283-306
[6]  
Kratochvil J, 1998, J GRAPH THEOR, V27, P43
[7]  
Skrekovski R, 2001, ARS COMBINATORIA, V58, P169
[8]   EVERY PLANAR GRAPH IS 5-CHOOSABLE [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) :180-181
[9]   A NOT 3-CHOOSABLE PLANAR GRAPH WITHOUT 3-CYCLES [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :325-328
[10]   LIST COLORINGS OF PLANAR GRAPHS [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :215-219