Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories

被引:31
作者
Xiang, Nan [1 ,2 ]
Yi, Hong [1 ,2 ]
Chen, Ke [1 ,2 ]
Wang, Shanfang [1 ,2 ]
Ni, Zhonghua [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Design & Mfg Micronano Biomed Ins, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROSCOPE PROJECTION PHOTOLITHOGRAPHY; SOFT-LITHOGRAPHY; FABRICATION; SYSTEMS; POLY(DIMETHYLSILOXANE); MICROFABRICATION; MICROCHANNELS; TECHNOLOGIES; PHOTORESIST; MICROARRAYS;
D O I
10.1088/0960-1317/23/2/025016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes maskless lithography as a rapid and cost-effective technique for fabricating high-quality microfluidic devices in laboratories. The detailed effects of exposure parameters on microstructure features are explored. A quantitative analysis of these effects provides insights into the device design and the selection of optimum processing parameters. To overcome the limitation of small exposure area, subregion stitching and sequential exposure are adopted for fabricating larger patterns. Seamless stitching between adjacent exposure subregions is achieved by optimizing the grayscale values of the stitching side/corner. These data are also valuable for exploring grayscale and multi-step lithography. Various hydrodynamic microdevices are then fabricated and characterized to validate the optimized parameters.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Lab-on-chip technologies:: making a microfluidic network and coupling it into a complete microsystem -: a review [J].
Abgrall, P. ;
Gue, A-M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :R15-R49
[2]   Latest Developments in Micro Total Analysis Systems [J].
Arora, Arun ;
Simone, Giuseppina ;
Salieb-Beugelaar, Georgette B. ;
Kim, Jung Tae ;
Manz, Andreas .
ANALYTICAL CHEMISTRY, 2010, 82 (12) :4830-4847
[3]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[4]   Polymer microfabrication technologies for microfluidic systems [J].
Becker, Holger ;
Gaertner, Claudia .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) :89-111
[5]   Continuous particle separation in spiral microchannels using dean flows and differential migration [J].
Bhagat, Ali Asgar S. ;
Kuntaegowdanahalli, Sathyakumar S. ;
Papautsky, Ian .
LAB ON A CHIP, 2008, 8 (11) :1906-1914
[6]   Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels [J].
Chung, Su Eun ;
Park, Wook ;
Park, Hyunsung ;
Yu, Kyoungsik ;
Park, Namkyoo ;
Kwon, Sunghoon .
APPLIED PHYSICS LETTERS, 2007, 91 (04)
[7]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[8]   High-throughput size-based rare cell enrichment using microscale vortices [J].
Hur, Soojung Claire ;
Mach, Albert J. ;
Di Carlo, Dino .
BIOMICROFLUIDICS, 2011, 5 (02)
[9]   A practical guide for the fabrication of microfluidic devices using glass and silicon [J].
Iliescu, Ciprian ;
Taylor, Hayden ;
Avram, Marioara ;
Miao, Jianmin ;
Franssila, Sami .
BIOMICROFLUIDICS, 2012, 6 (01)
[10]   Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication [J].
Itoga, Kazuyoshi ;
Kobayashi, Jun ;
Tsuda, Yukiko ;
Yarnato, Masayuki ;
Okano, Teruo .
ANALYTICAL CHEMISTRY, 2008, 80 (04) :1323-1327