One-dimensional physics-based reduced-order model of lithium-ion dynamics

被引:98
作者
Lee, James L. [1 ]
Chemistruck, Andrew [2 ]
Plett, Gregory L. [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Colorado Springs, CO 80918 USA
[2] Texas Instruments Inc, Santa Clara, CA 95051 USA
关键词
Lithium ion battery; Electrochemical model; Battery management systems; Distributed parameter model order reduction; Transcendental transfer function model order reduction; INSERTION CELL; BATTERIES; REDUCTION;
D O I
10.1016/j.jpowsour.2012.07.075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a method to produce a physics-based one-dimensional discrete-time state-space reduced-order model (ROM) of a lithium-ion cell. The resulting ROM can predict the five variables of a standard porous-electrode model-reaction flux, solid and electrolyte lithium concentration, and solid and electrolyte potentials-at any location across the cell cross section, as well as cell terminal voltage. The method to generate the model involves first linearizing the porous-electrode-model equations, and then deriving closed-form Laplace-domain transfer functions from the linearized equations. Next, the discrete-time realization algorithm (DRA) is used to convert the transfer functions into an optimal discrete-time state-space realization. Advantages of this approach include that the DRA avoids nonlinear optimization and gives a straightforward method for selecting the system order for the ROM. Simulation results demonstrate that the ROM cell voltage predictions and the ROM internal electrochemical variable predictions match very closely with results obtained by simulating the full nonlinear porous-electrode partial differential equations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:430 / 448
页数:19
相关论文
共 15 条
[1]  
Agarwal R.P., 2008, INTRO ORDINARY DIFFE, P28
[2]   Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations [J].
Cai, Long ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A154-A161
[3]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[4]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[5]   Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Pade Approximation [J].
Forman, Joel C. ;
Bashash, Saeid ;
Stein, Jeffrey L. ;
Fathy, Hosam K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) :A93-A101
[6]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[7]  
Ho B., 1966, Regelungstechnik, V14, P545, DOI DOI 10.1524/AUTO.1966.14.112.545
[8]   A comparative study of equivalent circuit models for Li-ion batteries [J].
Hu, Xiaosong ;
Li, Shengbo ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2012, 198 :359-367
[9]   DIFFUSION IMPEDANCE IN PLANAR, CYLINDRICAL AND SPHERICAL-SYMMETRY [J].
JACOBSEN, T ;
WEST, K .
ELECTROCHIMICA ACTA, 1995, 40 (02) :255-262
[10]   Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion [J].
Lee, James L. ;
Chemistruck, Andrew ;
Plett, Gregory L. .
JOURNAL OF POWER SOURCES, 2012, 206 :367-377