Strong limit theorems for weighted sums of negatively associated random variables

被引:52
作者
Jing, Bing-Yi [2 ]
Liang, Han-Ying [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
strong law; weighted sum; Cesaro mean; complete convergence; negatively associated random variable;
D O I
10.1007/s10959-007-0128-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish strong laws for weighted sums of identically distributed negatively associated random variables. Marcinkiewicz-Zygmund's strong law of large numbers is extended to weighted sums of negatively associated random variables. Furthermore, we investigate various limit properties of Cesaro's and Riesz's sums of negatively associated random variables. Some of the results in the i.i.d. setting, such as those in Jajte (Ann. Probab. 31(1), 409-412, 2003), Bai and Cheng (Stat. Probab. Lett. 46, 105-112, 2000), Li et al. (J. Theor. Probab. 8, 49-76, 1995) and Gut (Probab. Theory Relat. Fields 97, 169-178, 1993) are also improved and extended to the negatively associated setting.
引用
收藏
页码:890 / 909
页数:20
相关论文
共 39 条
[1]  
ALAM K, 1981, COMMUN STAT A-THEOR, V10, P1183
[2]   On the convergence of moving average processes under dependent conditions [J].
Baek, JI ;
Kim, TS ;
Liang, HY .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) :331-342
[3]  
Bai ZD, 1997, STAT SINICA, V7, P923
[4]   Marcinkiewicz strong laws for linear statistics [J].
Bai, ZD ;
Cheng, PE .
STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) :105-112
[5]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[6]   Summability methods and negatively associated random variables [J].
Bingham, NH ;
Sani, HRN .
JOURNAL OF APPLIED PROBABILITY, 2004, 41A :231-238
[7]   RIESZ AND VALIRON MEANS AND FRACTIONAL MOMENTS [J].
BINGHAM, NH ;
TENENBAUM, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 99 :143-149
[8]   Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables [J].
Chandra, TK ;
Ghosal, S .
ACTA MATHEMATICA HUNGARICA, 1996, 71 (04) :327-336
[9]   SOME CONVERGENCE THEOREMS FOR INDEPENCENT RANDOM VARIABLES [J].
CHOW, YS .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1482-&
[10]   LIMITING BEHAVIOR OF WEIGHTED SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
CHOW, YS ;
LAI, TL .
ANNALS OF PROBABILITY, 1973, 1 (05) :810-824