A logarithmically improved regularity criterion for the Navier-Stokes equations

被引:0
作者
Liu, Qiao [1 ]
Zhao, Jihong [1 ]
Cui, Shangbin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2012年 / 167卷 / 3-4期
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Regularity; Mild solution; SPACES;
D O I
10.1007/s00605-011-0313-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove a logarithmically improved regularity criterion in terms of the Besov space norm for the Navier-Stokes equations. The result shows that if a mild solution u satisfies for some 0 a parts per thousand currency sign r < 1 and , then u is regular at t = T.
引用
收藏
页码:503 / 509
页数:7
相关论文
共 16 条
[11]  
Montgomery-Smith S., 2005, APPL MATH, V50, P451
[12]  
Prodi G., 1959, Annali di Matematica, V48, P173, DOI [10.1007/BF02410664, /10.1007/BF02410664]
[13]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[14]  
SOHR H, 2002, QUADERNI MATH, V10, P321
[15]   Regularity criteria for the solutions to the 3D MHD equations in the multiplier space [J].
Zhou, Yong ;
Gala, Sadek .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (02) :193-199
[16]   Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces [J].
Zhou, Yong ;
Gala, Sadek .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :498-501