A logarithmically improved regularity criterion for the Navier-Stokes equations

被引:0
作者
Liu, Qiao [1 ]
Zhao, Jihong [1 ]
Cui, Shangbin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2012年 / 167卷 / 3-4期
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Regularity; Mild solution; SPACES;
D O I
10.1007/s00605-011-0313-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove a logarithmically improved regularity criterion in terms of the Besov space norm for the Navier-Stokes equations. The result shows that if a mild solution u satisfies for some 0 a parts per thousand currency sign r < 1 and , then u is regular at t = T.
引用
收藏
页码:503 / 509
页数:7
相关论文
共 16 条
[1]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[2]  
Chan CH, 2007, METHODS APPL ANAL, V14, P197
[3]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[4]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[5]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[6]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194
[7]   Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations [J].
Kozono, H ;
Shimada, Y .
MATHEMATISCHE NACHRICHTEN, 2004, 276 :63-74
[8]   The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations [J].
Kozono, H ;
Ogawa, T ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :251-278
[9]  
Lemarie-Rieusset P.-G., 2002, Research Notes in Mathematics, V431
[10]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248