Linear convergence rates for extrapolated fixed point algorithms

被引:9
作者
Bargetz, Christian [1 ]
Kolobov, Victor I. [2 ]
Reich, Simeon [3 ]
Zalas, Rafal [3 ]
机构
[1] Univ Innsbruck, Dept Math, Innsbruck, Austria
[2] Technion Israel Inst Technol, Dept Comp Sci, Haifa, Israel
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Extrapolation; linear rate; string averaging; QUASI-NONEXPANSIVE OPERATORS; CONVEX FEASIBILITY PROBLEMS; PROJECTION METHODS; SUCCESSIVE-APPROXIMATIONS; INFINITE PRODUCTS; WEAK-CONVERGENCE; HILBERT; REGULARITY; ITERATION; MAPPINGS;
D O I
10.1080/02331934.2018.1512109
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We establish linear convergence rates for a certain class of extrapolated fixed point algorithms which are based on dynamic string-averaging methods in a real Hilbert space. This applies, in particular, to the extrapolated simultaneous and cyclic cutter methods. Our analysis covers the cases of both metric and subgradient projections.
引用
收藏
页码:163 / 195
页数:33
相关论文
共 49 条
[1]   Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces [J].
Aleyner, Arkady ;
Reich, Simeon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) :427-435
[2]  
[Anonymous], 2001, STUD COMPUT MATH
[3]  
[Anonymous], 2002, J.Nonlinear Convex Anal
[4]   Viscosity approximation process for a sequence of quasinonexpansive mappings [J].
Aoyama, Koji ;
Kohsaka, Fumiaki .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[5]  
Asuni N., 2014, P SMART TOOLS APPS G, P63, DOI DOI 10.2312/STAG.20141242
[6]  
Asuni N., 2013, J GRAPH TOOLS, V17, P113, DOI DOI 10.1080/2165347X.2015.1024298
[7]   Convergence properties of dynamic string-averaging projection methods in the presence of perturbations [J].
Bargetz, Christian ;
Reich, Simeon ;
Zalas, Rafal .
NUMERICAL ALGORITHMS, 2018, 77 (01) :185-209
[8]   Linear and strong convergence of algorithms involving averaged nonexpansive operators [J].
Bauschke, Heinz H. ;
Noll, Dominikus ;
Phan, Hung M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) :1-20
[9]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[10]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738