A COUPLING METHOD OF HOMOTOPY PERTURBATION AND LAPLACE TRANSFORMATION FOR FRACTIONAL MODELS

被引:0
作者
Khan, Yasir [1 ]
Faraz, Naeem [2 ]
Kumar, Sunil [3 ]
Yildirim, Ahmet [4 ,5 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Donghua Univ, Modern Text Inst, Shanghai 200051, Peoples R China
[3] Dehradun Inst Tecgnol, Dept Math, Uttarakhand, India
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] Ege Univ, Fac Sci, Dept Math, TR-35100 Bornova, Turkey
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2012年 / 74卷 / 01期
关键词
Laplace transform; modified Riemann-Liouville derivative; homotopy perturbation method; VARIATIONAL ITERATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; DECOMPOSITION METHOD; DIFFUSION; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper suggests a novel coupling method of homotopy perturbation and Laplace transformation for fractional models. This method is based on He's homotopy perturbation, Laplace transformation and the modified Riemann-Liouville derivative. However, all the previous works avoid the term of fractional order initial conditions and handle them as a restricted variation. In order to overcome this shortcoming, a fractional Laplace homotopy perturbation transform method (FLHPTM) is proposed with modified Riemann-Liouville derivative. The results from introducing a modified Riemann-Liouville derivative, fractional order initial conditions and Laplace transform in the cases studied show the high accuracy, simplicity and efficiency of the approach.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1999, FRACTIONAL CALCULUS
[2]  
[Anonymous], 2011, J KING SAUD UNIV SCI, DOI DOI 10.1016/j.jksus.2010.06.024
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   SOLUTION OF NONINTEGER ORDER DIFFERENTIAL-EQUATIONS VIA THE ADOMIAN DECOMPOSITION METHOD [J].
ARORA, HL ;
ABDELWAHID, FI .
APPLIED MATHEMATICS LETTERS, 1993, 6 (01) :21-23
[5]   DEFINITION OF PHYSICALLY CONSISTENT DAMPING LAWS WITH FRACTIONAL DERIVATIVES [J].
BEYER, H ;
KEMPFLE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (08) :623-635
[6]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[7]  
Das S, 2008, INT J NONLIN SCI NUM, V9, P361
[8]  
Faraz N., 2011, J KING SAUD UNIV SCI, V23, P413, DOI [10.1016/j.jksus.2010.07.025, DOI 10.1016/j.jksus.2010.07.025]
[9]  
Faraz N, 2010, INT J NONLIN SCI NUM, V11, P305
[10]  
Ganji ZZ, 2008, TOPOL METHOD NONL AN, V31, P341