Human glutathione transferase zeta

被引:44
作者
Board, PG
Anders, MW
机构
[1] Australian Natl Univ, John Curtin Sch Med Res, Mol Genet Grp, Canberra, ACT 2601, Australia
[2] Univ Rochester, Med Ctr, Dept Pharmacol & Physiol, Rochester, NY 14642 USA
来源
GLUTHIONE TRANSFERASES AND GAMMA-GLUTAMYL TRANSPEPTIDASES | 2005年 / 401卷
关键词
D O I
10.1016/S0076-6879(05)01004-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Zeta-class glutathione transferases (GSTZs) were recently discovered by a bioinformatics approach and the availability of human expressed sequence tag databases. Although GSTZ showed little activity with conventional GST substrates (1-chloro-2,4-dinitrobenzene; organic hydroperoxides), GSTZ was found to catalyze the oxygenation of dichloroacetic acid (DCA) to glyoxylic acid and the cis-trans isomerization of maleylacetoacetate to fumarylacetoacetate. Hence, GSTZ plays a critical role in the tyrosine degradation pathway and in alpha-haloacid metabolism. The GSTZ-catalyzed biotransformation of DCA is of particular interest, because DCA is used in the human clinical management of congenital lactic acidosis and because DCA is a common drinking water contaminant. Substrate selectivity studies showed that GSTZ catalyzes the glutathione-dependent biotransformation of a range of dihaloacetic acids along with fluoroacetic acid, 2-halopropanoic acids, and 2,2-dichloropropanoic acid. Human clinical studies showed that the elimination half-life of DCA increases with repeated doses of DCA; also, rats given DCA show low GSTZ activity with DCA as the substrate. DCA was found to be a mechanism-based inactivator of GSTZ, and proteomic studies showed that Cys-16 of human GSTZ1-1 is covalently modified by a reactive intermediate that contains glutathione and the carbon skeleton of DCA. Bioinformatics studies also showed the presence of at least four polymorphic variants of human GSTZ; these variants differ considerably in the rates of catalysis and in their susceptibility to inactivation by DCA. Finally, Gstz1(-/-) mouse strains have been developed; these mice fail to biotransform DCA or maleylacetone. Although the mice have no obvious phenotype, a high incidence of lethality is observed in young mice given phenylalanine in their drinking water. Gstz1(-/-) mice should prove useful in expanding the role of GSTZ in alpha-haloacid metabolism and in the tyrosine degradation pathway.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 53 条
[1]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Pharmacologic or genetic ablation of maleylacetoacetate isomerase increases levels of toxic tyrosine catabolites in rodents [J].
Ammini, CV ;
Fernandez-Canon, J ;
Shroads, AL ;
Cornett, R ;
Cheung, J ;
James, MO ;
Henderson, GN ;
Grompe, M ;
Stacpoole, PW .
BIOCHEMICAL PHARMACOLOGY, 2003, 66 (10) :2029-2038
[4]   Mass spectral characterization of dichloroacetic acid-modified human glutathione transferase zeta [J].
Anderson, WB ;
Liebler, DC ;
Board, PG ;
Anders, MW .
CHEMICAL RESEARCH IN TOXICOLOGY, 2002, 15 (11) :1387-1397
[5]   Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking α-haloalkanoic acids [J].
Anderson, WB ;
Board, PG ;
Gargano, B ;
Anders, MW .
CHEMICAL RESEARCH IN TOXICOLOGY, 1999, 12 (12) :1144-1149
[6]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[7]   Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis [J].
Blackburn, AC ;
Tzeng, HF ;
Anders, MW ;
Board, PG .
PHARMACOGENETICS, 2000, 10 (01) :49-57
[8]   GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase [J].
Blackburn, AC ;
Coggan, M ;
Tzeng, HF ;
Lantum, H ;
Polekhina, G ;
Parker, MW ;
Anders, MW ;
Board, PG .
PHARMACOGENETICS, 2001, 11 (08) :671-678
[9]   Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis [J].
Board, P ;
Blackburn, A ;
Jermiin, LS ;
Chelvanayagam, G .
TOXICOLOGY LETTERS, 1998, 103 :149-154
[10]  
Board PG, 1997, BIOCHEM J, V328, P929