Compressible subsonic potential flow past a 2D given sharp angular unbounded domain

被引:0
作者
Yang, Hui [1 ,2 ,3 ]
机构
[1] Anhui Univ Technol, Sch Math & Phys, Maanshan 243002, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Ramp; subsonic flow; potential equation; weighted Holder space; CONIC SHOCK-WAVE; EXISTENCE;
D O I
10.1007/s10114-012-0414-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the two-dimensional subsonic flow problem around an infinite long ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by a second elliptic equation. By the use of a separation variable method, Strum-Liouville theorem and scaling technique, we show that a nontrivial subsonic flow around the infinite long ramp does not exist under some certain assumptions on the potential flow with a low Mach number.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 1984, MINIMAL SURFACES FUN
[2]  
[Anonymous], 1980, CHINESE ANN MATH B
[3]  
Azzam A., 1981, ANN POL MATH, V1, P81
[5]  
BERS L, 1954, J RATION MECH ANAL, V3, P767
[6]  
BOJARSKI B, 1966, ARCH MECH, V18, P497
[7]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[8]   Global shock waves for the supersonic flow past a perturbed cone [J].
Chen, SX ;
Xin, ZP ;
Yin, HC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) :47-84
[9]   EXISTENCE OF LOCAL SOLUTION TO SUPERSONIC-FLOW PAST A 3-DIMENSIONAL WING [J].
CHEN, SX .
ADVANCES IN APPLIED MATHEMATICS, 1992, 13 (03) :273-304
[10]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243