Noise Estimation Proposal for Real Time DSL Systems using Linear Regression and Fuzzy Systems

被引:0
|
作者
Farias, F. S. [1 ]
Moritsuka, N. S. [1 ]
Borges, G. S. [1 ]
de Souza, L. V. [1 ]
Frances, C. R. L. [1 ]
Costa, J. C. W. A. [1 ]
机构
[1] Fed Univ Para UFPA, BR-66075900 Belem, Para, Brazil
来源
2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) | 2012年
关键词
Data mining; DSL systems; Fuzzy systems; linear regression; noise;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents two methods for determining the noise power (mainly caused by crosstalk) in Digital Subscriber Line (DSL) networks. A fuzzy system approach is compared to a linear regression approach. Both are applied to a real world DSL network where a variable noise power is injected. Knowledge Discovery in Database (KDD) is used to organize the data selection, while linear regression and Fuzzy algorithms are compared through data mining process. Results show that the use of techniques such as Fuzzy and linear regression are an effective solution for the real-time estimation of crosstalk in DSL systems. The proposed scheme can be adapted to other types of noise, thus extending its application to DSL systems.
引用
收藏
页码:759 / 762
页数:4
相关论文
共 50 条
  • [41] Parameter Estimation Algorithm of the Linear Regression with Bounded Noise in Measurements of All Variables
    Salnikov, N. N.
    Siryk, S. V.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2013, 45 (04) : 1 - 15
  • [42] Robust estimation in multiple linear regression model with non-Gaussian noise
    Akkaya, Aysen D.
    Tiku, Moti L.
    AUTOMATICA, 2008, 44 (02) : 407 - 417
  • [43] Linear Regression-Based Channel Estimation for Non-Gaussian Noise
    Chaudhary, Prerna
    Chauhan, Isha
    Manoj, B. R.
    Bhatnagar, Manav R.
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [44] Adaptive Time Window Linear Regression for Outage Prediction in Q/V Band Satellite Systems
    De Cola, Tomaso
    Mongelli, Maurizio
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 808 - 811
  • [45] Airfoil Self Noise Prediction Using Linear Regression Approach
    Sathyadevan, Shiju
    Chaitra, M. A.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 551 - 561
  • [46] SNR Estimation in Linear Systems With Gaussian Matrices
    Suliman, Mohamed A.
    Alrashdi, Ayed M.
    Ballal, Tarig
    Al-Naffouri, Tareq Y.
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (12) : 1867 - 1871
  • [47] A note on model-free regression capabilities of fuzzy systems
    Landajo, M
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01): : 645 - 651
  • [48] Suspended load estimation using L1-fuzzy regression, L2-fuzzy regression and MARS-fuzzy regression models
    Chachi, Jalal
    Taheri, Seyed Mahmoud
    Pazhand, Hojat Rezaee
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2016, 61 (08): : 1489 - 1502
  • [49] A surprising property of uniformly best linear affine estimation in linear regression when prior information is fuzzy
    Arnold, Bernhard F.
    Stahlecker, Peter
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (04) : 954 - 960
  • [50] NEMO: Real-Time Noise and Exhaust Emissions Monitoring for Sustainable and Intelligent Transportation Systems
    Rauniyar, Ashish
    Berge, Truls
    Kuijpers, Ard
    Litzinger, Paul
    Peeters, Bert
    van Gils, Erik
    Kirchhoff, Nikolas
    Hakegard, Jan Erik
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 25497 - 25517