Noise Estimation Proposal for Real Time DSL Systems using Linear Regression and Fuzzy Systems

被引:0
|
作者
Farias, F. S. [1 ]
Moritsuka, N. S. [1 ]
Borges, G. S. [1 ]
de Souza, L. V. [1 ]
Frances, C. R. L. [1 ]
Costa, J. C. W. A. [1 ]
机构
[1] Fed Univ Para UFPA, BR-66075900 Belem, Para, Brazil
来源
2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) | 2012年
关键词
Data mining; DSL systems; Fuzzy systems; linear regression; noise;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents two methods for determining the noise power (mainly caused by crosstalk) in Digital Subscriber Line (DSL) networks. A fuzzy system approach is compared to a linear regression approach. Both are applied to a real world DSL network where a variable noise power is injected. Knowledge Discovery in Database (KDD) is used to organize the data selection, while linear regression and Fuzzy algorithms are compared through data mining process. Results show that the use of techniques such as Fuzzy and linear regression are an effective solution for the real-time estimation of crosstalk in DSL systems. The proposed scheme can be adapted to other types of noise, thus extending its application to DSL systems.
引用
收藏
页码:759 / 762
页数:4
相关论文
共 50 条
  • [21] Noise level estimation in weakly nonlinear slowly time-varying systems
    Aerts, J. R. M.
    Lataire, J.
    Pintelon, R.
    Dirckx, J. J. J.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (10)
  • [22] Enhanced Fuzzy Fault Estimation of Discrete-Time Nonlinear Systems via a New Real-Time Gain-Scheduling Mechanism
    Xie, Xiang-Peng
    Lu, Jianqiang
    Yue, Dong
    Ding, Da-Wei
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (03) : 1607 - 1617
  • [23] Accurate Noise Level Estimation through Singular Values and Linear Regression
    Das, Aditya K.
    Chandle, J. O.
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ENGINEERING & TECHNOLOGY ICETECH-2016, 2016, : 1132 - 1135
  • [24] Uniformly best estimation in linear regression when prior information is fuzzy
    Arnold, Bernhard F.
    Stahlecker, Peter
    STATISTICAL PAPERS, 2010, 51 (02) : 485 - 496
  • [25] Uniformly best estimation in linear regression when prior information is fuzzy
    Bernhard F. Arnold
    Peter Stahlecker
    Statistical Papers, 2010, 51 : 485 - 496
  • [26] Background Subtraction in Surveillance Systems Using Local Spectral Histograms and Linear Regression
    Hariharan, S.
    Venkatesan, R.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (01): : 407 - 422
  • [27] Fully fuzzy linear systems with trapezoidal and hexagonal fuzzy numbers
    Ziqan, Abdelhalim
    Ibrahim, Sabreen
    Marabeh, Mohammad
    Qarariyah, Ammar
    GRANULAR COMPUTING, 2022, 7 (02) : 229 - 238
  • [28] Fully fuzzy linear systems with trapezoidal and hexagonal fuzzy numbers
    Abdelhalim Ziqan
    Sabreen Ibrahim
    Mohammad Marabeh
    Ammar Qarariyah
    Granular Computing, 2022, 7 : 229 - 238
  • [29] BEM modeling of non linear systems noise
    Alia, Ahlem
    Souli, Mhamed
    Proceedings of the ASME Pressure Vessels and Piping Conference 2005, Vol 4, 2005, 4 : 251 - 256
  • [30] Uzawa Algorithms for Fully Fuzzy Linear Systems
    Zareamoghaddam, H.
    Chronopoulos, A. T.
    Kadijani, M. Nouri
    Zareamoghaddam, Z.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2016, 9 (05) : 971 - 983