Spectral collocation method for nonlinear Caputo fractional differential system

被引:4
作者
Gu, Zhendong [1 ]
机构
[1] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Peoples R China
关键词
Spectral collocation method; Fractional differential system; Caputo; Convergence analysis; Numerical experiments; BOUNDARY-VALUE-PROBLEMS; FINITE-ELEMENT-METHOD; NUMERICAL-SOLUTION; APPROXIMATIONS; SCHEME;
D O I
10.1007/s10444-020-09808-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral collocation method is developed to solve a nonlinear Caputo fractional differential system. The main idea is to solve the corresponding system of weakly singular nonlinear Volterra integral equations (VIEs). The convergence analysis in matrix form shows that the presented method has spectral convergence. Numerical experiments are carried out to confirm theoretical results.
引用
收藏
页数:21
相关论文
共 41 条
  • [1] Numerical solutions for fractional differential equations by Tau-Collocation method
    Allahviranloo, T.
    Gouyandeh, Z.
    Armand, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 979 - 990
  • [2] Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations
    Atabakzadeh, M. H.
    Akrami, M. H.
    Erjaee, G. H.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (20-21) : 8903 - 8911
  • [3] Brunner H., 2004, Cambridge Monographs on Applied and Computational Mathematics, V15
  • [4] GENERALIZED JACOBI FUNCTIONS AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS
    Chen, Sheng
    Shen, Jie
    Wang, Li-Lian
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (300) : 1603 - 1638
  • [5] Debnath L., 2003, Int. J. Math. Math. Sci, V2003, P3413, DOI [10.1155/S0161171203301486, DOI 10.1155/S0161171203301486]
  • [6] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [7] Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
    Diethelm, Kai
    [J]. ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 : 3 - +
  • [8] On shifted Jacobi spectral approximations for solving fractional differential equations
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8042 - 8056
  • [9] Faires J.D., 1998, Numerical Methods
  • [10] SPECTRAL COLLOCATION METHOD FOR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Ghoreishi, F.
    Mokhtary, P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)