ON LOCAL AND GLOBAL RIGIDITY OF QUASI-CONFORMAL ANOSOV DIFFEOMORPHISMS

被引:16
作者
Kalinin, Boris [1 ]
Sadovskaya, Victoria [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
rigidity; Anosov systems; conformal structures; smooth conjugacy; SMOOTH CONJUGACY;
D O I
10.1017/S1474748003000161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a transitive uniformly quasi-conformal Anosov diffeomorphism f of a compact manifold M. We prove that if the stable and unstable distributions have dimensions greater than two, then f is C-infinity conjugate to an affine Anosov automorphism of a finite factor of a torus. If the dimensions are at least two, the same conclusion holds under the additional assumption that M is an infranilmanifold. We also describe necessary and sufficient conditions for smoothness of conjugacy between such a diffeomorphism and a small perturbation.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 19 条
[1]   AFFINE ANOSOV DIFFEOMORPHISMS WITH STABLE AND UNSTABLE DIFFERENTIABLE FOLIATIONS [J].
BENOIST, Y ;
LABOURIE, F .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :285-308
[2]   Rigidity of higher-dimensional conformal Anosov systems [J].
De la Llave, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1845-1870
[3]  
DE LA LLAVE R., LIVSIC THEOREM FOR N
[4]   INVARIANTS FOR SMOOTH CONJUGACY OF HYPERBOLIC DYNAMIC-SYSTEMS .2. [J].
DELALLAVE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (03) :369-378
[5]   INVARIANTS FOR SMOOTH CONJUGACY OF HYPERBOLIC DYNAMICAL-SYSTEMS .4. [J].
DELALLAVE, R ;
MORIYON, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (02) :185-192
[6]   SMOOTH CONJUGACY AND S-R-B MEASURES FOR UNIFORMLY AND NONUNIFORMLY HYPERBOLIC SYSTEMS [J].
DELALLAVE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (02) :289-320
[7]   The invariant connection of a 1/2-pinched Anosov diffeomorphism and rigidity [J].
Feres, R .
PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (01) :139-155
[8]  
FERES R., RIGID TRANSFORMATION
[9]   ANOSOV DIFFEOMORPHISMS ON TORI [J].
FRANKS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :117-&
[10]   HOLOMORPHIC ANOSOV SYSTEMS [J].
GHYS, E .
INVENTIONES MATHEMATICAE, 1995, 119 (03) :585-614