Stochastic Nonlinear Model Predictive Mobile Robot Motion Control

被引:4
作者
Nascimento, Tiago P. [1 ]
Basso, Gabriel F. [1 ]
Dorea, Carlos E. T. [2 ]
Goncalves, Luiz M. G. [2 ]
机构
[1] Univ Fed Paraiba UFPB, Dept Comp Syst, LaSER Syst Engn & Robot Lab, Joao Pessoa, PB, Brazil
[2] Univ Fed Rio Grande Norte UFRN, Dept Comp & Automat, Natal, RN, Brazil
来源
15TH LATIN AMERICAN ROBOTICS SYMPOSIUM 6TH BRAZILIAN ROBOTICS SYMPOSIUM 9TH WORKSHOP ON ROBOTICS IN EDUCATION (LARS/SBR/WRE 2018) | 2018年
关键词
D O I
10.1109/LARS/SBR/WRE.2018.00014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In mobile robotics, constraints may represent mobility issues, vision uncertainties or localization uncertainties. In model predictive control (MPC) theory, constraint satisfaction is typically guaranteed through the use of accurate prediction models or robust control. However, although MPC offers a certain degree of robustness to system uncertainties, its deterministic formulation typically renders it inherently inadequate for systematically dealing with uncertainties. Towards this direction, this paper presents a Stochastic Nonlinear Model Predictive Control (SNMPC) algorithm for active target tracking. Our goal is to use a stochastic nonlinear model predictive controller to penalize the undesired behavior, allowing the robot to converge to the optimal pose in order to observe the target optimally. The paper presents simulations in which the stochastic nonlinear controller provides satisfactory target tracking control.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 12 条
[1]   Chance-Constrained Optimal Path Planning With Obstacles [J].
Blackmore, Lars ;
Ono, Masahiro ;
Williams, Brian C. .
IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (06) :1080-1094
[2]   A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control [J].
Blackmore, Lars ;
Ono, Masahiro ;
Bektassov, Askar ;
Williams, Brian C. .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (03) :502-517
[3]   Stochastic Model Predictive Control AN OVERVIEW AND PERSPECTIVES FOR FUTURE RESEARCH [J].
Mesbah, Ali .
IEEE CONTROL SYSTEMS MAGAZINE, 2016, 36 (06) :30-44
[4]   A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm [J].
Mohimani, Hosein ;
Babaie-Zadeh, Massoud ;
Jutten, Christian .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) :289-301
[5]   Active Target Tracking and Cooperative Localization for Teams of Aerial Vehicles [J].
Morbidi, Fabio ;
Mariottini, Gian Luca .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) :1694-1707
[6]   Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A modified approach [J].
Nascimento, Tiago P. ;
Trabuco Dorea, Carlos Eduardo ;
Goncalves, Luiz Marcos G. .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2018, 15 (01)
[7]   Multi-robot nonlinear model predictive formation control: Moving target and target absence [J].
Nascimento, Tiago P. ;
Moreira, Antonio Paulo ;
Scolari Conceicao, Andre G. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) :1502-1515
[8]  
RIEDMILLER M, 1993, 1993 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, P586, DOI 10.1109/ICNN.1993.298623
[9]   Value-based action selection for observation with robot teams using probabilistic techniques [J].
Stroupe, AW ;
Balch, T .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2005, 50 (2-3) :85-97
[10]   Distributed cooperative active sensing using consensus filters [J].
Yang, Peng ;
Freeman, Randy A. ;
Lynch, Kevin M. .
PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, :405-410