Scalable importance tempering and Bayesian variable selection

被引:24
作者
Zanella, Giacomo [1 ]
Roberts, Gareth [2 ]
机构
[1] Bocconi Univ, Milan, Italy
[2] Univ Warwick, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Bayesian variable selection; Computational complexity; Gibbs sampling; Importance sampling; Markov chain Monte Carlo sampling; Point mass priors; CHAIN MONTE-CARLO; COMPUTATIONAL-COMPLEXITY; MODEL SELECTION; CONVERGENCE;
D O I
10.1111/rssb.12316
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable-selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.
引用
收藏
页码:489 / 517
页数:29
相关论文
共 38 条
  • [1] [Anonymous], 1992, Bayesian statistics
  • [2] ON THE COMPUTATIONAL COMPLEXITY OF MCMC-BASED ESTIMATORS IN LARGE SAMPLES
    Belloni, Alexandre
    Chernozhukov, Victor
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 2011 - 2055
  • [3] Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation
    Calon, Alexandre
    Espinet, Elisa
    Palomo-Ponce, Sergio
    Tauriello, Daniele V. F.
    Iglesias, Mar
    Virtudes Cespedes, Maria
    Sevillano, Marta
    Nadal, Cristina
    Jung, Peter
    Zhang, Xiang H. -F.
    Byrom, Daniel
    Riera, Antoni
    Rossell, David
    Mangues, Ramon
    Massague, Joan
    Sancho, Elena
    Batlle, Eduard
    [J]. CANCER CELL, 2012, 22 (05) : 571 - 584
  • [4] Chimisov C., 2018, ARXIV180109299
  • [5] Chipman H., 2001, LECT NOTES MONOGRAPH, P65, DOI DOI 10.1214/LNMS/1215540964
  • [6] WHICH ERGODIC AVERAGES HAVE FINITE ASYMPTOTIC VARIANCE?
    Deligiannidis, George
    Lee, Anthony
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (04) : 2309 - 2334
  • [7] Duan LL, 2018, J MACH LEARN RES, V19
  • [8] Benchmark priors for Bayesian model averaging
    Fernández, C
    Ley, E
    Steel, MFJ
    [J]. JOURNAL OF ECONOMETRICS, 2001, 100 (02) : 381 - 427
  • [9] SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS
    Frieze, Alan
    Kannan, Ravi
    Polson, Nick
    [J]. ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) : 812 - 837
  • [10] GELFAND AE, 1995, BIOMETRIKA, V82, P479, DOI 10.1093/biomet/82.3.479