Aging dynamics and the topology of inhomogenous networks

被引:20
作者
Burioni, R.
Cassi, D.
Corberi, F.
Vezzani, A.
机构
[1] Univ Parma, Dipartimento Fis, I-423100 Parma, Italy
[2] Univ Parma, Ist Nazl Fis Nucl, I-423100 Parma, Italy
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Salerno, Italy
[4] Univ Salerno, CNR, INFM, I-84081 Baronissi, Salerno, Italy
[5] Univ Parma, CNR, INFM, I-423100 Parma, Italy
关键词
D O I
10.1103/PhysRevLett.96.235701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study phase ordering on networks and we establish a relation between the exponent a(chi) of the aging part of the integrated autoresponse function chi(ag) and the topology of the underlying structures. We show that a(chi)> 0 in full generality on networks which are above the lower critical dimension d(L), i.e., where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with T-c=0, which are at the lower critical dimension d(L), we show that a(chi) is expected to vanish. We provide numerical results for the physically interesting case of the 2-d percolation cluster at or above the percolation threshold, i.e., at or above d(L), and for other networks, showing that the value of a(chi) changes according to our hypothesis. For O(N) models we find that the same picture holds in the large-N limit and that a(chi) only depends on the spectral dimension of the network.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis) [J].
Erenpreisa, Jekaterina ;
Krigerts, Jekabs ;
Salmina, Kristine ;
Gerashchenko, Bogdan I. ;
Freivalds, Talivaldis ;
Kurg, Reet ;
Winter, Ruth ;
Krufczik, Matthias ;
Zayakin, Pawel ;
Hausmann, Michael ;
Giuliani, Alessandro .
CELLS, 2021, 10 (07)
[22]   Dynamics of boolean networks with small-world topology [J].
Zhang, Xin ;
Zhao, Qianchuan .
Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, :197-201
[23]   Topology shapes dynamics of higher-order networks [J].
Millan, Ana P. ;
Sun, Hanlin ;
Giambagli, Lorenzo ;
Muolo, Riccardo ;
Carletti, Timoteo ;
Torres, Joaquin J. ;
Radicchi, Filippo ;
Kurths, Juergen ;
Bianconi, Ginestra .
NATURE PHYSICS, 2025, 21 (03) :353-361
[24]   Combinatorial topology and qualitative dynamics in cellular neural networks [J].
Civalleri, PP ;
Gilli, M .
1996 FOURTH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, PROCEEDINGS (CNNA-96), 1996, :191-195
[25]   Identifying the topology of networks with discrete-time dynamics [J].
Guo, Shu-Juan ;
Fu, Xin-Chu .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
[26]   Topology and dynamics of attractor neural networks: The role of loopiness [J].
Zhang, Pan ;
Chen, Yong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (16-17) :4411-4416
[27]   Role of time scales and topology on the dynamics of complex networks [J].
Gupta, Kajari ;
Ambika, G. .
CHAOS, 2019, 29 (03)
[28]   The impact of noise and topology on opinion dynamics in social networks [J].
Stern, Samuel ;
Livan, Giacomo .
ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (04)
[29]   Topology and dynamics of higher-order multiplex networks [J].
Krishnagopal, Sanjukta ;
Bianconi, Ginestra .
CHAOS SOLITONS & FRACTALS, 2023, 177
[30]   General dynamics of topology and traffic on weighted technological networks [J].
Wang, WX ;
Wang, BH ;
Hu, B ;
Yan, G ;
Ou, Q .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)