Aging dynamics and the topology of inhomogenous networks

被引:20
作者
Burioni, R.
Cassi, D.
Corberi, F.
Vezzani, A.
机构
[1] Univ Parma, Dipartimento Fis, I-423100 Parma, Italy
[2] Univ Parma, Ist Nazl Fis Nucl, I-423100 Parma, Italy
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Salerno, Italy
[4] Univ Salerno, CNR, INFM, I-84081 Baronissi, Salerno, Italy
[5] Univ Parma, CNR, INFM, I-423100 Parma, Italy
关键词
D O I
10.1103/PhysRevLett.96.235701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study phase ordering on networks and we establish a relation between the exponent a(chi) of the aging part of the integrated autoresponse function chi(ag) and the topology of the underlying structures. We show that a(chi)> 0 in full generality on networks which are above the lower critical dimension d(L), i.e., where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with T-c=0, which are at the lower critical dimension d(L), we show that a(chi) is expected to vanish. We provide numerical results for the physically interesting case of the 2-d percolation cluster at or above the percolation threshold, i.e., at or above d(L), and for other networks, showing that the value of a(chi) changes according to our hypothesis. For O(N) models we find that the same picture holds in the large-N limit and that a(chi) only depends on the spectral dimension of the network.
引用
收藏
页数:4
相关论文
共 50 条
[1]   Networks, topology and dynamics [J].
Silvana Stefani ;
Anna Torriero .
Quality & Quantity, 2014, 48 :1817-1819
[2]   Networks, topology and dynamics [J].
Stefani, Silvana ;
Torriero, Anna .
QUALITY & QUANTITY, 2014, 48 (04) :1817-1819
[3]   DYNAMICS AND TOPOLOGY OF IDIOTYPIC NETWORKS [J].
NEUMANN, AU ;
WEISBUCH, G .
BULLETIN OF MATHEMATICAL BIOLOGY, 1992, 54 (05) :699-726
[4]   Complex networks: Topology, dynamics and synchronization [J].
Wang, XF .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :885-916
[5]   Evolving networks : From topology to dynamics [J].
Zhengping Fan ;
Guanrong Chen ;
King Tim Ko .
Journal of Control Theory and Applications, 2004, 2 (1) :60-64
[6]   Evolving networks: from topology to dynamics [J].
King Tim KO .
Journal of Control Theory and Applications, 2004, (01) :60-64
[7]   General coevolution of topology and dynamics in networks [J].
Herrera, J. L. ;
Cosenza, M. G. ;
Tucci, K. ;
Gonzalez-Avella, J. C. .
EPL, 2011, 95 (05)
[8]   From topology to dynamics in biochemical networks [J].
Fox, JJ ;
Hill, CC .
CHAOS, 2001, 11 (04) :809-815
[9]   Trust Networks Topology, Dynamics, and Measurements [J].
Agreste, Santa ;
De Meo, Pasquale ;
Ferrara, Emilio ;
Piccolo, Sebastiano ;
Provetti, Alessandro .
IEEE INTERNET COMPUTING, 2015, 19 (06) :26-35
[10]   Networks from Flows - From Dynamics to Topology [J].
Molkenthin, Nora ;
Rehfeld, Kira ;
Marwan, Norbert ;
Kurths, Juergen .
SCIENTIFIC REPORTS, 2014, 4