Berry-Esseen bound for high dimensional asymptotic approximation of Wilks' Lambda distribution

被引:9
作者
Ulyanov, Vladimir V.
Wakaki, Hirofumi [1 ]
Fujikoshi, Yasunori
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 724, Japan
[2] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Dept Math Stat, Moscow, Russia
[3] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 112, Japan
基金
俄罗斯基础研究基金会;
关键词
asymptotic distribution; Berry-Esseen bound; high dimensional approximation; Wilks' lambda distribution;
D O I
10.1016/j.spl.2005.12.027
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Lambda = \S-e\/\S-e + S-h\, where S-h and S-e are independently distributed as Wishart distributions W-p(q, Sigma) and W-p(n, Sigma), respectively. Then Lambda is distributed as Wilks' lambda distribution Lambda(p,q,n) which appears as the distributions of various multivariate likelihood ratio tests. In this paper, we derive a Berry-Essen bound for a high dimensional asymptotic approximation of the distribution of T = -n log Lambda when p/n --> c is an element of (0, 1). (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1191 / 1200
页数:10
相关论文
共 6 条
[1]  
Abramowitz M, 1964, NBS APPL MATH SERIES, V55
[2]  
Anderson T, 1984, INTRO MULTIVARIATE
[3]  
FUJIKOSHI Y, IN PRESS J MULTIVARI
[4]  
PETROV VV, 1982, SUMS INDEPENDENT RAN
[5]  
Shiganov I.S., 1986, J SOVIET MATH, P2545
[6]   Asymptotic expansion of the null distribution of LR statistic for multivariate linear hypothesis when the dimension is large [J].
Tonda, T ;
Fujikoshi, Y .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (05) :1205-1220