Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties

被引:58
作者
Luo, S. D. [1 ]
Li, Q. [2 ]
Tian, J. [3 ]
Wang, C. [4 ]
Yan, M. [1 ]
Schaffer, G. B. [1 ]
Qian, M. [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, ARC Ctr Excellence Design Light Met, Brisbane, Qld 4072, Australia
[2] Griffith Univ, Environm Engn & Queensland Micro & Nanotechnol Ct, Brisbane, Qld 4111, Australia
[3] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[4] Curtin Univ Technol, Dept Chem Engn, Perth, WA 6845, Australia
关键词
Titanium; Metal matrix composites (MMCs); Powder processing; Sintering; Nanometric titanium carbide; METAL-MATRIX COMPOSITES; MECHANICAL-PROPERTIES; AQUEOUS ROUTE; NANOCOMPOSITES; MICROSTRUCTURE; ALLOYS; PURE;
D O I
10.1016/j.scriptamat.2013.03.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiC nanoplatelet-reinforced titanium composites were synthesized through a novel fabrication approach that combines resol nanosphere (10-30 nm) coating with conventional powder metallurgy. The resulting TiC nanoplatelets, 28-130 nm thick, are self-assembled, well aligned in each individual grain but randomly orientated throughout the microstructure. The as-sintered Ti-TiC composites exhibit outstanding compressive properties, with ultimate strength = 2.54 GPa, yield strength = 1.52 GPa and strain to fracture = 44.4%, stronger than all other advanced Ti materials reported to date. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 40 条
[1]   CermeTi® discontinuously reinforced Ti-matrix composites:: Manufacturing, properties, and applications [J].
Abkowitz, S ;
Abkowitz, SM ;
Fisher, H ;
Schwartz, PJ .
JOM, 2004, 56 (05) :37-41
[2]   Carbon nanotube reinforced metal matrix composites - a review [J].
Bakshi, S. R. ;
Lahiri, D. ;
Agarwal, A. .
INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) :41-64
[3]   Strain hardening due to {10(1)over-bar2} twinning in pure magnesium [J].
Caceres, C. H. ;
Lukac, P. ;
Blake, A. .
PHILOSOPHICAL MAGAZINE, 2008, 88 (07) :991-1003
[4]   Grain Size Hardening in Mg and Mg-Zn Solid Solutions [J].
Caceres, C. H. ;
Mann, Gemma E. ;
Griffiths, J. R. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (07) :1950-1959
[5]   Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites [J].
Chen, Lian-Yi ;
Konishi, Hiromi ;
Fehrenbacher, Axel ;
Ma, Chao ;
Xu, Jia-Quan ;
Choi, Hongseok ;
Xu, Hui-Fang ;
Pfefferkorn, Frank E. ;
Li, Xiao-Chun .
SCRIPTA MATERIALIA, 2012, 67 (01) :29-32
[6]   EFFECT OF INTERSTITIAL SOLUTES ON THE STRENGTH AND DUCTILITY OF TITANIUM [J].
CONRAD, H .
PROGRESS IN MATERIALS SCIENCE, 1981, 26 (2-4) :123-404
[7]   ORDER AND DISORDER IN TRANSITION-METAL CARBIDES AND NITRIDES - EXPERIMENTAL AND THEORETICAL ASPECTS [J].
DENOVION, CH ;
LANDESMAN, JP .
PURE AND APPLIED CHEMISTRY, 1985, 57 (10) :1391-1402
[8]   Materials science - Structural nanocomposites [J].
Dzenis, Yuris .
SCIENCE, 2008, 319 (5862) :419-420
[9]   Composites Reinforced in Three Dimensions by Using Low Magnetic Fields [J].
Erb, Randall M. ;
Libanori, Rafael ;
Rothfuchs, Nuria ;
Studart, Andre R. .
SCIENCE, 2012, 335 (6065) :199-204
[10]   Joining prepreg composite interfaces with aligned carbon nanotubes [J].
Garcia, Enrique J. ;
Wardle, Brian L. ;
Hart, A. John .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2008, 39 (06) :1065-1070