Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains

被引:69
作者
Bonito, Andrea [1 ]
Guermond, Jean-Luc [1 ]
Luddens, Francky [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] CNRS, LIMISI, UPR 3251, F-91403 Orsay, France
基金
美国国家科学基金会;
关键词
Maxwell equations; Elliptic regularity; Discontinuous coefficients; Lipschitz domains; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.jmaa.2013.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies On elliptic regularity estimates for the Poisson problem with non-smooth coefficients. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:498 / 512
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1964, PUBL MATH I, DOI 10.1007/BF02684796
[2]  
Bonito A., 2013, APPL MATH SCI
[3]   APPROXIMATION OF THE EIGENVALUE PROBLEM FOR THE TIME HARMONIC MAXWELL SYSTEM BY CONTINUOUS LAGRANGE FINITE ELEMENTS [J].
Bonito, Andrea ;
Guermond, Jean-Luc .
MATHEMATICS OF COMPUTATION, 2011, 80 (276) :1887-1910
[4]   A REMARK ON THE REGULARITY OF SOLUTIONS OF MAXWELL EQUATIONS ON LIPSCHITZ-DOMAINS [J].
COSTABEL, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (04) :365-368
[5]  
Costabel M, 1999, RAIRO-MATH MODEL NUM, V33, P627
[6]   On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains [J].
Costabel, Martin ;
McIntosh, Alan .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) :297-320
[7]  
Ern A., 2004, APPL MATH SCI, V159
[8]  
Girault V., 1986, MONOGRAPHS STUDIES M
[9]  
Grisvard P., 1985, PROGRAM, V24
[10]   THE INHOMOGENEOUS DIRICHLET PROBLEM IN LIPSCHITZ-DOMAINS [J].
JERISON, D ;
KENIG, CE .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :161-219