Zd Toeplitz arrays

被引:21
作者
Cortez, MI
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Bourgogne, Inst Math Bourgogne, UMR 5584, CNRS,UFR Sci & Tech, F-21078 Dijon, France
关键词
primary; 54H20; secondary; 37B50;
D O I
10.3934/dcds.2006.15.859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
pIn this paper we give a definition of Toeplitz sequences and odometers for Z(d) actions for d >= 1 which generalizes that in dimension one. For these new concepts we study properties of the induced Toeplitz dynamical systems and odometers classical for d = 1. In particular, we characterize the Z(d) - regularly recurrent systems as the minimal almost 1-1 extensions of odometers and the Z(d)-Toeplitz systems as the family of sub shifts which are regularly recurrent.
引用
收藏
页码:859 / 881
页数:23
相关论文
共 16 条
[1]  
Auslander Joseph, 1988, North-Holland Mathematics Studies, V153
[2]  
BENEDETTI R, 2003, ERGOD THEOR DYN, V23, P573
[3]   Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems [J].
Cortez, MI ;
Durand, F ;
Host, B ;
Maass, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :790-804
[4]  
Downarowicz T, 2005, CONTEMP MATH, V385, P7
[5]  
Downarowicz T, 2002, MATH SCAND, V90, P57
[6]   The royal couple conceals their mutual relationship: A noncoalescent T Toeplitz flow [J].
Downarowicz, T .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 97 (1) :239-251
[7]   THE CHOQUET SIMPLEX OF INVARIANT-MEASURES FOR MINIMAL FLOWS [J].
DOWNAROWICZ, T .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 74 (2-3) :241-256
[8]  
DOWNAROWICZ T, 1989, STUD MATH, V130, P1469
[9]   Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows [J].
Gjerde, R ;
Johansen, O .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :1687-1710
[10]  
Glasner E., 2003, MATH SURVEYS MONOGRA, V101