DIFFERENTIABLE EXACT PENALTY FUNCTIONS FOR NONLINEAR SECOND-ORDER CONE PROGRAMS

被引:16
作者
Fukuda, Ellen H. [1 ]
Silva, Paulo J. S. [1 ]
Fukushima, Masao [2 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Inst Math Stat & Comp Sci, BR-13083859 Campinas, SP, Brazil
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
基金
日本学术振兴会; 巴西圣保罗研究基金会;
关键词
nonlinear second-order cone program; exact penalty function; semi-smooth reformulation; generalized Newton method; AUGMENTED LAGRANGIAN METHOD; OPTIMIZATION PROBLEMS; COMPLEMENTARITY-PROBLEMS; NEWTON METHOD; CONVERGENCE ANALYSIS; SEMIDEFINITE; CONSTRAINTS; ALGORITHM; DUALITY;
D O I
10.1137/110852401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a method for solving nonlinear second-order cone programs (SOCPs), based on a continuously differentiable exact penalty function. The construction of the penalty function is given by incorporating a multipliers estimate in the augmented Lagrangian for SOCPs. Under the nondegeneracy assumption and the strong second-order sufficient condition, we show that a generalized Newton method has global and superlinear convergence. We also present some preliminary numerical experiments.
引用
收藏
页码:1607 / 1633
页数:27
相关论文
共 40 条