Global error bounds for piecewise convex polynomials

被引:58
作者
Li, Guoyin [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Error bound; Piecewise convex polynomial; Convex optimization; Sensitivity analysis; D-GAP FUNCTIONS; INEQUALITY SYSTEMS; OPTIMALITY CONDITIONS; CONDITION NUMBER; EXTENSION; NONSMOOTH; PROGRAMS; THEOREM;
D O I
10.1007/s10107-011-0481-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, by examining the recession properties of convex polynomials, we provide a necessary and sufficient condition for a piecewise convex polynomial to have a Holder-type global error bound with an explicit Holder exponent. Our result extends the corresponding results of Li (SIAM J Control Optim 33(5):1510-1529, 1995) from piecewise convex quadratic functions to piecewise convex polynomials.
引用
收藏
页码:37 / 64
页数:28
相关论文
共 43 条
[1]  
Andronov V.G., 2001, COMP MATH MATH PHYS, V41, P943
[2]  
Andronov V.G., 2002, COMP MATH MATH PHYS, V42, P1086
[3]  
[Anonymous], 1993, CONVEX ANAL MINIMIZA
[4]  
AUSLENDER A, 2003, SPRINGER MG MATH, pR7
[5]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[6]  
Belousov E. G., 1993, SOLVABILITY STABILIT
[7]   A Frank-Wolfe type theorem for convex polynomial programs [J].
Belousov, EG ;
Klatte, D .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (01) :37-48
[8]   On types of Hausdorff discontinuity from above for convex closed mappings [J].
Belousov, EG .
OPTIMIZATION, 2001, 49 (04) :303-325
[9]   Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions [J].
Burke, James V. ;
Deng, Sien .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :37-56
[10]   Weak sharp minima revisited, part II: application to linear regularity and error bounds [J].
Burke, JV ;
Deng, S .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :235-261