Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap

被引:16
作者
Dewan, Raimi [1 ]
Rahim, M. K. A. [1 ]
Himdi, Mohamed [2 ]
Hamid, M. R. [1 ]
Majid, H. A. [3 ]
Jalil, M. E. [1 ]
机构
[1] Univ Technol Malaysia, Adv RF & Microwave Res Grp, Dept Commun Engn, Fac Elect Engn, Johor Baharu 81310, Johor, Malaysia
[2] UMR CNRS 6164, IETR, Campus Beaulieu,263 Ave Gen Leclerc, F-35042 Rennes, France
[3] Univ Tun Hussein Onn Malaysia, Res Ctr Appl Electromagnet, Batu Pahat, Johor, Malaysia
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2017年 / 123卷 / 01期
关键词
MAGNETIC CONDUCTOR AMC; PATCH ANTENNA; IMPROVEMENT; DESIGN;
D O I
10.1007/s00339-016-0643-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.
引用
收藏
页数:7
相关论文
共 17 条
  • [1] Metamaterials: supra-classical dynamic homogenization
    Caleap, Mihai
    Drinkwater, Bruce W.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [2] A genetic metamaterial and its application to gain improvement of a patch antenna
    Chen, X.
    Chen, J.
    Liu, C.
    Huang, K.
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2012, 26 (14-15) : 1977 - 1985
  • [3] An electromagnetic bandgap resonator antenna
    Cheype, C
    Serier, C
    Thèvenot, M
    Monédière, T
    Reineix, A
    Jecko, B
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (09) : 1285 - 1290
  • [4] Reconfigurable antenna using capacitive loading to Artificial Magnetic Conductor (AMC)
    Dewan, Raimi
    Rahim, M. K. A.
    Hamid, M. R.
    Majid, H. A.
    Yusoff, M. F. M.
    Jalil, M. E.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2016, 58 (10) : 2422 - 2429
  • [5] THE IMPROVEMENT OF ARRAY ANTENNA PERFORMANCE WITH THE IMPLEMENTATION OF AN ARTIFICIAL MAGNETIC CONDUCTOR (AMC) GROUND PLANE AND IN-PHASE SUPERSTRATE
    Dewan, Raimi
    Rahim, Sharul K. A.
    Ausordin, Siti F.
    Purnamirza, Teddy
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 140 : 147 - 167
  • [6] Understanding metamaterials
    Fiddy, M. A.
    Tsu, R.
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2010, 20 (02) : 202 - 222
  • [7] Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures
    Fu, YQ
    Zheng, QR
    Gao, Q
    Zhang, GH
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2006, 20 (06) : 819 - 825
  • [8] A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUCTURE
    Guo, Wanyi
    He, Lianxing
    Li, Biao
    Teng, Teng
    Sun, Xiaowei
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 134 : 289 - 299
  • [9] Jalil M. E., 2016, APPL PHYS A, V122, P1
  • [10] Frequency-Reconfigurable Bow-Tie Antenna for Bluetooth, WiMAX, and WLAN Applications
    Li, Tong
    Zhai, Huiqing
    Wang, Xin
    Li, Long
    Liang, Changhong
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 171 - 174