A simple application of compressed sensing to further accelerate partially parallel imaging

被引:16
作者
Miao, Jun [1 ]
Guo, Weihong [2 ]
Narayan, Sreenath [1 ]
Wilson, David L. [1 ,3 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Univ Hosp Cleveland, Dept Math, Cleveland, OH 44106 USA
[3] Univ Hosp Cleveland, Dept Radiol, Cleveland, OH 44106 USA
关键词
Compressed sensing; Coherent aliasing artifact; Parallel MR imaging; K-space sampling; Decomposition; Quantitative image quality; Perceptual difference model; RECONSTRUCTION;
D O I
10.1016/j.mri.2012.06.028
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Compressed sensing (CS) and partially parallel imaging (PPI) enable fast magnetic resonance (MR) imaging by reducing the amount of k-space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, "CS+GRAPPA," to overcome this limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS and averaged the results to get a final CS k-space reconstruction. We used both a standard CS and an edge- and joint-sparsity-guided CS reconstruction. We tested these intermediate results on both synthetic and real MR phantom data and performed a human observer experiment to determine the effectiveness of decomposition and to optimize the number of subsets. We then used these CS reconstructions to calibrate the generalized autocalibrating partially parallel acquisitions (GRAPPA) complex coil weights. In vivo parallel MR brain and heart data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge- and joint-sparsity-guided CS using two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same Case-PDM scores as standard GRAPPA using about half the number of samples. We conclude that the new method augments GRAPPA by combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 26 条
[1]  
Beaty PJ, 2009, P ISMRM
[2]  
Blaimer Martin, 2004, Top Magn Reson Imaging, V15, P223, DOI 10.1097/01.rmr.0000136558.09801.dd
[3]  
Candes EJ, 2002, EEE T INF THEORY, P52
[4]  
Chartrand R., 2008, P ISBI
[5]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[6]   Compressed sensing in dynamic MRI [J].
Gamper, Urs ;
Boesiger, Peter ;
Kozerke, Sebastian .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (02) :365-373
[7]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[8]  
Guo W, 2010, P SPIE VISUAL COMMUN, V7744
[9]  
Guo WH, 2008, LECT NOTES COMPUT SC, V5242, P939
[10]   A Rapid and Robust Numerical Algorithm for Sensitivity Encoding with Sparsity Constraints: Self-Feeding Sparse SENSE [J].
Huang, Feng ;
Chen, Yunmei ;
Yin, Wotao ;
Lin, Wei ;
Ye, Xiaojing ;
Guo, Weihong ;
Reykowski, Arne .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) :1078-1088