A Note on Reassigned Gabor Spectrograms of Hermite Functions

被引:16
作者
Flandrin, Patrick [1 ]
机构
[1] CNRS, Ecole Normale Super Lyon, Lab Phys, UMR 5672, F-69373 Lyon 07, France
关键词
Gabor transform; Hermite functions; Time-frequency analysis; Reassignment;
D O I
10.1007/s00041-012-9253-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explicit form is given for the reassigned Gabor spectrogram of an Hermite function of arbitrary order. It is shown that the energy concentration sharply localizes outside the border of a clearance area limited by the "classical" circle where the Gabor spectrogram attains its maximum value, with a perfect localization that can only be achieved in the limit of infinite order.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 16 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
  • [2] [Anonymous], 1994, TABLES INEGRALS SERI
  • [3] [Anonymous], 2003, APPL TIME FREQUENCY
  • [4] On Phase-Magnitude Relationships in the Short-Time Fourier Transform
    Auger, Francois
    Chassande-Mottin, Eric
    Flandrin, Patrick
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (05) : 267 - 270
  • [5] Bayram M, 2000, NONLINEAR AND NONSTATIONARY SIGNAL PROCESSING, P292
  • [6] CHASSANDEMOTTIN E, 1998, THESIS U CERGY PONTO
  • [7] Cohen-Tannoudji C., 1977, Quantum Mechanics, V2nd
  • [8] TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH
    DAUBECHIES, I
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) : 605 - 612
  • [9] Dym H., 1972, Fourier series and integrals. Probability and mathematical statistics
  • [10] Flandrin P., 1999, TIME FREQUENCY TIME