Impact of tungsten recrystallization on ITER-like components for lifetime estimation

被引:32
作者
Durif, A. [1 ]
Richou, M. [1 ]
Kermouche, G. [2 ]
Lenci, M. [2 ]
Bergheau, J-M. [3 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Ecole Natl Super Mines, CNRS UMR 5307, LGF, F-42023 St Etienne 2, France
[3] Univ Lyon, CNRS UMR 5513, LIDS, Ecole Natl Ingenieurs St Etienne, F-42023 St Etienne, France
关键词
Tungsten; Damage; Lifetime; Compressive test; Mechanical behavior; Plastic strain; Recrystallization; QUALIFICATION;
D O I
10.1016/j.fusengdes.2018.11.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
For ITER divertor, plasma facing components are made with tungsten as armor material. In previous papers, it has been shown that plasma facing components are prone to crack, appearing in tungsten block during thermal cyclic heat loading. In order to predict component lifetime, a numerical simulation is proposed in this paper. With regard to previous studies, tungsten (raw and recrystallized) real mechanical behaviors are taken into account. To be used as inputs for numerical simulations, compressive tests at different temperatures and strain rates were realized on raw and recrystallized tungsten. Raw tungsten tests reveal a linear elastic and ideal plastic behavior that is sensitive to strain rate. Concerning recrystallized tungsten, an elastic-viscoplastic behavior is observed on the entire explored temperature range (up to 1150 degrees C), that can be described by an elastic-plastic model with kinematic hardening. Manson-Coffin relationships are used to estimate the lifetime. When taking into account real mechanical behaviors for raw tungsten and recrystallized tungsten, we show that lifetime estimation is mainly driven by recrystallized thickness in the component, by the ductile to brittle transition temperature and finally by strain rate.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 20 条
[1]  
[Anonymous], S74MA2 ITER
[2]  
[Anonymous], 2016, Nucl. Mater. Energy., DOI [DOI 10.1016/J.NME, 10.1016/J.NME.2016.07.003, DOI 10.1016/J.NME.2016.07.003]
[3]  
[Anonymous], 2013, ITER STRUCTURAL DESI
[4]  
Clavel M., 2009, ENDOMMAGEMENT RUPTUR, V1
[5]   FEM study of recrystallized tungsten under ELM-like heat loads [J].
Du, J. ;
Yuan, Y. ;
Wirtz, M. ;
Linke, J. ;
Liu, W. ;
Greuner, H. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :219-222
[6]   Progress of ITER full tungsten divertor technology qualification in Japan [J].
Ezato, K. ;
Suzuki, S. ;
Seki, Y. ;
Mohri, K. ;
Yokoyama, K. ;
Escourbiac, F. ;
Hirai, T. ;
Kuznetcov, V. .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1281-1284
[7]  
Farre J., 1997, J PHYS, V07
[8]  
Forschungszentrum Karlsruhe, 2006, NUCL FUS PROGR ANN R
[9]   High heat flux testing of mock-ups for a full tungsten ITER divertor [J].
Gavila, P. ;
Riccardi, B. ;
Constans, S. ;
Jouvelot, J. L. ;
Vastra, I. Bobin ;
Missirlian, M. ;
Richou, M. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) :1652-1655
[10]   Status of technology R&D for the ITER tungsten divertor monoblock [J].
Hirai, T. ;
Escourbiac, F. ;
Barabash, V. ;
Durocher, A. ;
Fedosov, A. ;
Ferrand, L. ;
Jokinen, T. ;
Komarov, V. ;
Merola, M. ;
Carpentier-Chouchana, S. ;
Arkhipov, N. ;
Kuznetcov, V. ;
Volodin, A. ;
Suzuki, S. ;
Ezato, K. ;
Seki, Y. ;
Riccardi, B. ;
Bednarek, M. ;
Gavila, P. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :1248-1251