Matrix product states represent ground states faithfully

被引:526
作者
Verstraete, F [1 ]
Cirac, JI
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevB.73.094423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We quantify how well matrix product states approximate exact ground states of one-dimensional quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of translational invariant systems. The results give a theoretical justification for the high accuracy of renormalization group algorithms and justifies their use even in the case of critical systems.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   New frontiers in quantum information with atoms and ions [J].
Cirac, JI ;
Zoller, P .
PHYSICS TODAY, 2004, 57 (03) :38-44
[3]   Energy as an entanglement witness for quantum many-body systems [J].
Dowling, MR ;
Doherty, AC ;
Bartlett, SD .
PHYSICAL REVIEW A, 2004, 70 (06) :062113-1
[4]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[5]  
FAHRI E, QUANTPH0001106, P26703
[6]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[7]   ABUNDANCE OF TRANSLATION INVARIANT PURE STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (03) :249-258
[8]   Locality in quantum and Markov dynamics on lattices and networks [J].
Hastings, MB .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :140402-1
[9]   Randomizing quantum states: Constructions and applications [J].
Hayden, P ;
Leung, D ;
Shor, PW ;
Winter, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (02) :371-391
[10]   Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture [J].
Jin, BQ ;
Korepin, VE .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :79-95