Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways

被引:223
作者
Hackel, A
Schauer, N
Carrari, F
Fernie, AR
Grimm, B
Kühn, C
机构
[1] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany
[2] Max Planck Inst Mol Pflanzenphysiol, D-14476 Potsdam, Germany
关键词
metabolic profile; phloem unloading; pollen germination; sucrose transport; seed and fruit development;
D O I
10.1111/j.1365-313X.2005.02572.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sucrose transporters of higher plants belong to a large gene family. At least four different sucrose transporters are known in Solanaceous plants, although their function remains to be elucidated in detail. The isolation of LeSUT1 and LeSUT2 from Lycopersicon esculentum has been described earlier. Whereas SUT1 is supposed to be the main phloem loader of sucrose in Solanaceae, the role of SUT2 remains a matter of debate. A transgenic approach was taken to evaluate the potential functions of SUT2/SUC3 proteins in sucrose transport or sensing. Expression of LeSUT1 and LeSUT2 was inhibited independently in transgenic tomato plants, using the antisense technique, in order to analyse their specific functions. Although the phloem-specific inhibition of LeSUT1 antisense plants showed a phenotype consistent with an essential role in phloem loading, constitutive LeSUT2 antisense inhibition exclusively affected tomato fruit and seed development. Neither LeSUT1, nor the LeSUT2 antisense plants were able to produce normal tomato fruits; however, it is likely that independent mechanisms underlie these phenomena. While phloem loading was blocked in LeSUT1 antisense plants, the fertility of fruits was reduced in LeSUT2 antisense plants. A detailed physiological analysis of these plants established a role for SUT2 in pollen tube growth and thus assigned a physiological role for SUT2.
引用
收藏
页码:180 / 192
页数:13
相关论文
共 49 条
[1]   Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues [J].
Aoki, N ;
Scofield, GN ;
Wang, XD ;
Patrick, JW ;
Offler, CE ;
Furbank, RT .
PLANTA, 2004, 219 (01) :176-184
[2]   SUT2, a putative sucrose sensor in sieve elements [J].
Barker, L ;
Kühn, C ;
Weise, A ;
Schulz, A ;
Gebhardt, C ;
Hirner, B ;
Hellmann, H ;
Schulze, W ;
Ward, JM ;
Frommer, WB .
PLANT CELL, 2000, 12 (07) :1153-1164
[3]   PmSUC3:: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major [J].
Barth, I ;
Meyer, S ;
Sauer, N .
PLANT CELL, 2003, 15 (06) :1375-1385
[4]   Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids [J].
Baxter, CJ ;
Carrari, F ;
Bauke, A ;
Overy, S ;
Hill, SA ;
Quick, PW ;
Fernie, AR ;
Sweetlove, LJ .
PLANT AND CELL PHYSIOLOGY, 2005, 46 (03) :425-437
[5]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[6]   A tale of three cell types: Alkaloid biosynthesis is localized to sieve elements in opium poppy [J].
Bird, DA ;
Franceschi, VR ;
Facchini, PJ .
PLANT CELL, 2003, 15 (11) :2626-2635
[7]   NONVASCULAR, SYMPLASMIC DIFFUSION OF SUCROSE CANNOT SATISFY THE CARBON DEMANDS OF GROWTH IN THE PRIMARY ROOT-TIP OF ZEA-MAYS L [J].
BRETHARTE, MS ;
SILK, WK .
PLANT PHYSIOLOGY, 1994, 105 (01) :19-33
[8]   The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves [J].
Bürkle, L ;
Hibberd, JM ;
Quick, WP ;
Kühn, C ;
Hirner, B ;
Frommer, WB .
PLANT PHYSIOLOGY, 1998, 118 (01) :59-68
[9]   Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force [J].
Carpaneto, A ;
Geiger, D ;
Bamberg, E ;
Sauer, N ;
Fromm, J ;
Hedrich, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (22) :21437-21443
[10]  
DEBLAERE R, 1985, NUCLEIC ACIDS RES, V13, P4777, DOI 10.1093/nar/13.13.4777