Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?

被引:17
作者
Chaudhry, Farhan [1 ,2 ,3 ]
Hunt, Rachel J. [3 ]
Hariharan, Prashant [4 ]
Anand, Sharath Kumar [1 ,2 ]
Sanjay, Surya [1 ,2 ]
Kjoller, Ellen E. [1 ,2 ]
Bartlett, Connor M. [1 ,2 ]
Johnson, Kipp W. [5 ]
Levy, Phillip D. [1 ,2 ]
Noushmehr, Houtan [3 ]
Lee, Ian Y. [3 ]
机构
[1] Wayne State Univ, Dept Emergency Med, Detroit, MI 48202 USA
[2] Wayne State Univ, Integrat Biosci Ctr, Detroit, MI 48202 USA
[3] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[4] Wayne State Univ, Dept Biomed Engn, Detroit, MI USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
关键词
neurocritical care; machine learning; artificial intelligence; neurology; intensive and critical care; PREDICTION; MODELS; NETWORKS;
D O I
10.3389/fneur.2020.554633
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The neurological ICU (neuro ICU) often suffers from significant limitations due to scarce resource availability for their neurocritical care patients. Neuro ICU patients require frequent neurological evaluations, continuous monitoring of various physiological parameters, frequent imaging, and routine lab testing. This amasses large amounts of data specific to each patient. Neuro ICU teams are often overburdened by the resulting complexity of data for each patient. Machine Learning algorithms (ML), are uniquely capable of interpreting high-dimensional datasets that are too difficult for humans to comprehend. Therefore, the application of ML in the neuro ICU could alleviate the burden of analyzing big datasets for each patient. This review serves to (1) briefly summarize ML and compare the different types of MLs, (2) review recent ML applications to improve neuro ICU management and (3) describe the future implications of ML to neuro ICU management.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Reliability of Robotic Telemedicine for Assessing Critically Ill Patients with the Full Outline of UnResponsiveness Score and Glasgow Coma Scale [J].
Adcock, Amelia K. ;
Kosiorek, Heidi ;
Parich, Prachi ;
Chauncey, Alyssa ;
Wu, Qing ;
Demaerschalk, Bart M. .
TELEMEDICINE AND E-HEALTH, 2017, 23 (07) :555-560
[2]   Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration [J].
Arbabshirani, Mohammad R. ;
Fornwalt, Brandon K. ;
Mongelluzzo, Gino J. ;
Suever, Jonathan D. ;
Geise, Brandon D. ;
Patel, Aalpen A. ;
Moore, Gregory J. .
NPJ DIGITAL MEDICINE, 2018, 1
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]  
Bean WB, 1954, BJPS, V5, P172
[5]  
Brain Trauma Foundation, 2007, J Neurotrauma, V24 Suppl 1, pS14, DOI 10.1089/neu.2007.9994
[6]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[7]   Machine Learning Interpretability: A Survey on Methods and Metrics [J].
Carvalho, Diogo, V ;
Pereira, Eduardo M. ;
Cardoso, Jaime S. .
ELECTRONICS, 2019, 8 (08)
[8]   Cloud Computing for Improved Healthcare: Techniques, Potential and Challenges [J].
Chauhan, Roma ;
Kumar, Amit .
2013 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2013,
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury [J].
Claassen, Jan ;
Doyle, Kevin ;
Matory, Adu ;
Couch, Caroline ;
Burger, Kelly M. ;
Velazquez, Angela ;
Okonkwo, Joshua U. ;
King, Jean-Remi ;
Park, Soojin ;
Agarwal, Sachin ;
Roh, David ;
Megjhani, Murad ;
Eliseyev, Andrey ;
Connolly, E. Sander ;
Rohaut, Benjamin .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (26) :2497-2505