Effect of sulfate group on sulfated polysaccharides-induced improvement of metabolic syndrome and gut microbiota dysbiosis in high fat diet-fed mice

被引:27
|
作者
Wu, Shuang [1 ]
Liu, Yili [1 ]
Jiang, Pingrui [1 ]
Xu, Yuxin [1 ]
Zheng, Weiyun [1 ]
Song, Shuang [1 ,2 ]
Ai, Chunqing [1 ,2 ]
机构
[1] Dalian Polytech Univ, Natl Engn Res Ctr Seafood, Sch Food Sci & Technol, Dalian 116034, Peoples R China
[2] Dalian Polytech Univ, Natl & Local Joint Engn Lab Marine Bioact Polysac, Dalian 116034, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfated polysaccharides; Gut microbiota; Metabolic syndrome; PACIFIC ABALONE; REDUCES OBESITY; ANTIOXIDANT; RESVERATROL; HOMEOSTASIS; CAPACITY; PROTEIN; LIVER; RATS;
D O I
10.1016/j.ijbiomac.2020.08.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sulfated polysaccharides were shown to benefit metabolic syndrome (MS) and gut microbiota, but the contribution of sulfate group remains unclear. In this study, sulfated polysaccharides from pacific abalone (AGSP) and its desulfated product (D-AGSP) were prepared, and the contribution of sulfate group was analyzed via in vitro and in vivo models. The result showed that sulfate group had no obvious effect on the reaction of AGSP with RAW 264.7 cells, but it affected the growth properties of gut microbes that able to utilize AGSP. The mice experiment showed that D-AGSP reduced weight gain, fat accumulation and lipid metabolism disorder in HFD-fed mice as well as AGSP, and no differences between them were found. Sequencing analysis showed that sulfate group influenced AGSP-induced alterations of the gut microbiota at higher taxonomic levels, some of which had close correlation with the improvement of physiological index. These results implied that sulfate group may partially determine the activities of polysaccharides via gut microbiota-mediated pathway, but the exact mechanisms need further research. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:2062 / 2072
页数:11
相关论文
共 50 条
  • [31] Ligustrum robustum (Roxb.) blume extract modulates gut microbiota and prevents metabolic syndrome in high-fat diet-fed mice
    Chen, Man
    Zheng, Junping
    Zou, Xiaojuan
    Ye, Cheng
    Xia, Hui
    Yang, Ming
    Gao, Qinghua
    Yang, Qingxiong
    Liu, Hongtao
    JOURNAL OF ETHNOPHARMACOLOGY, 2021, 268
  • [32] Polysaccharide from Flammulina velutipes attenuates markers of metabolic syndrome by modulating the gut microbiota and lipid metabolism in high fat diet-fed mice
    Zhao, Ruiqiu
    Ji, Yang
    Chen, Xin
    Hu, Qiuhui
    Zhao, Liyan
    FOOD & FUNCTION, 2021, 12 (15) : 6964 - 6980
  • [33] Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice
    Li, Tiange
    Gao, Jing
    Du, Min
    Mao, Xueying
    JOURNAL OF FUNCTIONAL FOODS, 2018, 47 : 56 - 65
  • [34] Effect of mushroom polysaccharides fromPleurotus eryngiion obesity and gut microbiota in mice fed a high-fat diet
    Nakahara, Daiki
    Nan, Cui
    Mori, Koichiro
    Hanayama, Motoki
    Kikuchi, Haruhisa
    Hirai, Shizuka
    Egashira, Yukari
    EUROPEAN JOURNAL OF NUTRITION, 2020, 59 (07) : 3231 - 3244
  • [35] Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats
    Lv, Xu-Cong
    Guo, Wei-Ling
    Li, Lu
    Yu, Xiao-Dan
    Liu, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2019, 57 : 48 - 58
  • [36] Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice
    Huang, Rui
    Zhu, Zhenjun
    Wu, Shujian
    Wang, Juan
    Chen, Mengfei
    Liu, Wei
    Huang, Aohuan
    Zhang, Jumei
    Wu, Qingping
    Ding, Yu
    FOOD RESEARCH INTERNATIONAL, 2022, 157
  • [37] Impact of pomegranate peel extract on gut microbiota composition and metabolic health parameters in high-fat diet-fed mice
    Duarte, Lissette
    Bustamante, Andres
    Orellana, Juan Francisco
    Valenzuela, Rodrigo
    Magne, Fabien
    Fuentes, Jocelyn
    Speisky, Hernan
    Echeverria, Francisca
    FOOD BIOSCIENCE, 2024, 61
  • [38] Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota
    Wang, Pan
    Gao, Jianpeng
    Ke, Weixin
    Wang, Jing
    Li, Daotong
    Liu, Ruolin
    Jia, Yan
    Wang, Xuehua
    Chen, Xin
    Chen, Fang
    Hu, Xiaosong
    FREE RADICAL BIOLOGY AND MEDICINE, 2020, 156 : 83 - 98
  • [39] Probiotics improve gut microbiota dysbiosis in obese mice fed a high fat or high-sucrose diet
    Kong, Cheng
    Gao, Renyuan
    Yan, Xuebing
    Huang, Linsheng
    Qin, Huanlong
    NUTRITION, 2019, 60 : 175 - 184